• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[´PLANO] Ponto de intersecção de reta com plano

[´PLANO] Ponto de intersecção de reta com plano

Mensagempor manuel_pato1 » Ter Set 25, 2012 09:48

Sejam a reta r e o plano \pi, dados por:

r: y=2x-3 / z=-x + 2 e \pi: 2x+ 4y- z - 4=0

a - O ponto de interseção de r com o plano xOz
c - equações da reta interseção de \pi com o plano xOy



**Na letra a, a resposta é: (3/2 , 0 , 1/2)

Essa resposta é exatamente o ponto que está na reta , pois quando a parametrizei , encontrei que x= 3/2 + t , y=2t, 1/1 -t.

Só que aí vem a minha dúvida. não entendi pq é o mesmo ponto da reta. Eu teria que ter a visão de que por ela apresentar um ponto nulo somente em y quer dizer que ela está no plano xOz?


***A letra c, eu realmente não sei começar =S , a resposta dela é: y= -1/2x +1 , z=0


Agradeço a quem conseguir me dar uma mão. Abraços
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [´PLANO] Ponto de intersecção de reta com plano

Mensagempor LuizAquino » Ter Set 25, 2012 12:11

manuel_pato1 escreveu:Sejam a reta r e o plano \pi, dados por:

r: y=2x-3 / z=-x + 2 e \pi: 2x+ 4y- z - 4=0

a - O ponto de interseção de r com o plano xOz
c - equações da reta interseção de \pi com o plano xOy


manuel_pato1 escreveu:**Na letra a, a resposta é: (3/2 , 0 , 1/2)

Essa resposta é exatamente o ponto que está na reta , pois quando a parametrizei , encontrei que x= 3/2 + t , y=2t, 1/1 -t.

Só que aí vem a minha dúvida. não entendi pq é o mesmo ponto da reta. Eu teria que ter a visão de que por ela apresentar um ponto nulo somente em y quer dizer que ela está no plano xOz?


Primeiro, uma observação: as equações paramétricas que você encontrou seriam x= 3/2 + t, y = 2t e z = 1/2 - t (note que você escreveu "1/1 - t" no final).

Agora pense um pouco: se o ponto está na interseção de r com o plano xOz, então é claro que esse ponto está ao mesmo tempo nessa reta e nesse plano.

Você já sabe que a equação do plano xOz é dada por y = 0. Portanto, todos os pontos desse plano possuem o formato (k, 0, m), sendo k e m escalares quaisquer.

Por outro lado, você obteve uma parametrização da reta r de tal modo que identificou que ela passa pelo ponto (3/2, 0, 1/2). Já que esse ponto tem o formato dos pontos no plano xOz, você já pode afirmar que ele também faz parte desse plano. Portanto, esse ponto está na interseção de r e xOz.

A questão aqui é que você achou uma parametrização conveniente, que já fornece diretamente o ponto que está na interseção. Mas você poderia ter achado outra parametrização que não acontece isso. Por exemplo, outras equações paramétricas para r seriam x = t, y = -3 + 2t e z = 2 - t. Nesse caso, sabemos imediatamente que a reta r passa pelo ponto (0, -3, 2). Mas esse ponto não pode estar no plano xOz. Para achar outro ponto de r que esteja nesse plano, basta lembrar que a equação do plano é y = 0. Sendo assim, teremos -3 + 2t = 0, de onde concluímos que em t = 3/2 a reta intercepta o plano. Substituindo esse valor de t nas equações paramétricas, obtemos x = 3/2, y = 0 e z = 1/2.

manuel_pato1 escreveu:***A letra c, eu realmente não sei começar =S , a resposta dela é: y= -1/2x +1 , z=0


Você já tem que a equação de \pi é dada por 2x + 4y - z - 4 = 0. Por outro lado, você sabe que o plano xOy tem equação z = 0. Portanto, a reta de interseção entre esses planos (que aqui chamarei de s) será dada por:

s\,:\,\begin{cases} 2x+ 4y- z - 4=0 \\ z = 0 \end{cases}

Tente concluir o item c) considerando essas informações.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}