• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Vetor Unitario] questao de geometria analítica 1

[Vetor Unitario] questao de geometria analítica 1

Mensagempor spektroos » Seg Set 24, 2012 01:41

Ao resolver um lista de exercicios, durante meus estudos, me deparei com 1 exercicios, que nao consegui resolver, alguem poderia me ajudar neles?

Determinar o valor de n para o vetor v = (n, -1/2, 3/4) seja unitario.

Me ajudem por favor! Obrigado!
Editado pela última vez por spektroos em Seg Set 24, 2012 11:29, em um total de 1 vez.
spektroos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Set 24, 2012 01:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Vetor Unitario] 2 questões de geometria analítica 1

Mensagempor LuizAquino » Seg Set 24, 2012 09:41

spektroos escreveu:Ao resolver um lista de exercicios, durante meus estudos, me deparei com 1 exercicios, que nao consegui resolver, alguem poderia me ajudar neles?

Determinar o valor de n para o vetor v = (n, -1/2, 3/4) seja unitario.

Me ajudem por favor! Obrigado!


Um vetor \vec{v} é unitário quando \|\vec{v}\| = 1 .

Note que o vetor dado no exercício é tal que:

\|\vec{v}\| = \sqrt{n^2 + \left(-\frac{1}{2}\right)^2 + \left(\frac{3}{4}\right)^2} = \sqrt{n^2 + \frac{13}{16}}

Sendo assim, você deseja determinar o valor de n tal que:

\sqrt{n^2 + \frac{13}{16}} = 1

Agora tente concluir o exercício.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Vetor Unitario] questao de geometria analítica 1

Mensagempor spektroos » Seg Set 24, 2012 16:52

obrigado!
spektroos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Set 24, 2012 01:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}