• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Superfície Esférica

Superfície Esférica

Mensagempor iarapassos » Sex Set 21, 2012 17:24

Determine a equação da superfície esférica definida pelas condições seguintes.

O centro pertence à reta r: X = (-2,0,0) + t(0.0,1), t\in\Re e é tangente aos planos \alpha: x - 2z - 8 = 0 e \beta: 2x - z +5 = 0.

Heelp!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Superfície Esférica

Mensagempor young_jedi » Sex Set 21, 2012 18:30

pirmeiro encontre os vetores normais N1 e N2 as duas superficies

temos que o centro da esfera pode ser representado por C=(a,b,c)

como ele pertence a reta X então C=(-2,0,t)

encontre um ponto P qualquer que pertença ao primeiro plano, fazendo

r&=&\frac{|PC.N1|}{N1}

isto dara o raio da esfera em função de t

Realize o mesmo procedimento para o segundo plano e voce encontrara, outra expressão do raio em função de t
igualando as expressões voce encontra t e consequentemente o ponto C ai depois é so achar o raio e pronto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)