• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Superfície Esférica

Superfície Esférica

Mensagempor iarapassos » Sex Set 21, 2012 17:24

Determine a equação da superfície esférica definida pelas condições seguintes.

O centro pertence à reta r: X = (-2,0,0) + t(0.0,1), t\in\Re e é tangente aos planos \alpha: x - 2z - 8 = 0 e \beta: 2x - z +5 = 0.

Heelp!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Superfície Esférica

Mensagempor young_jedi » Sex Set 21, 2012 18:30

pirmeiro encontre os vetores normais N1 e N2 as duas superficies

temos que o centro da esfera pode ser representado por C=(a,b,c)

como ele pertence a reta X então C=(-2,0,t)

encontre um ponto P qualquer que pertença ao primeiro plano, fazendo

r&=&\frac{|PC.N1|}{N1}

isto dara o raio da esfera em função de t

Realize o mesmo procedimento para o segundo plano e voce encontrara, outra expressão do raio em função de t
igualando as expressões voce encontra t e consequentemente o ponto C ai depois é so achar o raio e pronto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}