• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lugar geometrico

Lugar geometrico

Mensagempor heldersmd » Sáb Set 15, 2012 12:35

Na questão:
Dados dois pontos A e B num plano com A ¹ B e um ponto P, que se move neste plano de maneira que a razão entre as distâncias PA e PB seja uma constante não negativa, determine a equação do lugar geométrico (LG) do ponto P e as possíveis figuras que esse LG pode representar.
tentei utilizar o relação: a distancia da tangente ao ponto P ao quadrado é igual do ponto (AB-R) multiplicado por (AB+R), onde R é igual a AP
introduzi estes valores no triangulo pitagorico onde AB ao quadrado é igual a AP ao quadrado mais PB ao quadrado...
sei que um dos lugares geometricos é o circulo mas não consegui expor como que posso provar isto...
gostaria de saber se existe outro lugar geometrico...
Muito Obrigado pela ajuda!!!
heldersmd
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Set 14, 2012 16:07
Formação Escolar: GRADUAÇÃO
Área/Curso: vestibulando
Andamento: cursando

Re: Lugar geometrico

Mensagempor young_jedi » Sáb Set 15, 2012 13:46

Sugiro que vc denote A&=&({a}_{x},{a}_{y}) e B&=&({b}_{x},{b}_{y}) e P&=&(x,y)

então as distancias serao

PA&=&\sqrt{(x-{a}_{x})^2+(y-{a}_{y})^2}

PB&=&\sqrt{(x-{b}_{x})^2+(y-{b}_{y})^2}

e a razão entre eles

c&=&\frac{\sqrt{(x-{a}_{x})^2+(y-{a}_{y})^2}}{\sqrt{(x-{b}_{x})^2+(y-{b}_{y})^2}}

logo

c^2&=&\frac{(x-{a}_{x})^2+(y-{a}_{y})^2}{(x-{b}_{x})^2+(y-{b}_{y})^2}

assim voce tera

(c^2-1)x^2+(2{a}_{x}-2c^2.{b}_{x})x+{b}_{x}^2.c^2-{a}_{x}^2+(c^2-1)y^2+(2{b}_{y}-2c^2.{b}_{y})y+{b}_{y}^2.c^2-{b}_{y}^2&=&0

avaliando a equação vc tera que tipos de figura ela pode formar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}