• Anúncio Global
    Respostas
    Exibições
    Última mensagem

COORDENADAS ESFÉRICA

COORDENADAS ESFÉRICA

Mensagempor ALEXSANDRO » Qua Jun 06, 2012 02:56

Questão:
A equação p=5cos\Theta é dada em coordenadas esfericas. Expresse a equação em coordenadas retangulares e identifique a superficie.

Resolução

{x}^{2}+{y}^{2}+{z}^{2}=5z
{x}^{2}+{y}^{2}+{z}^{2}-5z=0
{x}^{2}+{y}^{2}+({z}^{2}-5z+5)=5
{x}^{2}+{y}^{2}+({z-5/2)}^{2}=5

Seria uma esfera (0,0,5/2) com raio 5/2

Esta correto este desenvolvimento?

Alguem pode me ajudar, se possivel?
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: COORDENADAS ESFÉRICA

Mensagempor LuizAquino » Qua Jun 06, 2012 09:40

ALEXSANDRO escreveu:Questão:
A equação p=5cos\Theta é dada em coordenadas esfericas. Expresse a equação em coordenadas retangulares e identifique a superficie.

Resolução

{x}^{2}+{y}^{2}+{z}^{2}=5z
{x}^{2}+{y}^{2}+{z}^{2}-5z=0
{x}^{2}+{y}^{2}+({z}^{2}-5z+5)=5
{x}^{2}+{y}^{2}+({z-5/2)}^{2}=5

Seria uma esfera (0,0,5/2) com raio 5/2

Esta correto este desenvolvimento?

Alguem pode me ajudar, se possivel?


Se você desenvolver o produto notável \left(z-\frac{5}{2}\right)^2 você obtém z^2 - 5z + 5 ?

Confira essa parte.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: COORDENADAS ESFÉRICA

Mensagempor ALEXSANDRO » Qua Jun 06, 2012 14:45

Ok, posso ter me passado ai.
Resolvendo o produto notavel não da isso, mas arrumando isso. o resultado está correto?
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: COORDENADAS ESFÉRICA

Mensagempor LuizAquino » Qua Jun 06, 2012 19:44

ALEXSANDRO escreveu:Ok, posso ter me passado ai.
Resolvendo o produto notavel não da isso, mas arrumando isso. o resultado está correto?


Se você estiver considerando que \Theta é o ângulo formado em relação ao eixo z, então estará correto quando você arrumar a questão do produto notável.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.