• Anúncio Global
    Respostas
    Exibições
    Última mensagem

COORDENADAS ESFÉRICA

COORDENADAS ESFÉRICA

Mensagempor ALEXSANDRO » Qua Jun 06, 2012 02:56

Questão:
A equação p=5cos\Theta é dada em coordenadas esfericas. Expresse a equação em coordenadas retangulares e identifique a superficie.

Resolução

{x}^{2}+{y}^{2}+{z}^{2}=5z
{x}^{2}+{y}^{2}+{z}^{2}-5z=0
{x}^{2}+{y}^{2}+({z}^{2}-5z+5)=5
{x}^{2}+{y}^{2}+({z-5/2)}^{2}=5

Seria uma esfera (0,0,5/2) com raio 5/2

Esta correto este desenvolvimento?

Alguem pode me ajudar, se possivel?
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: COORDENADAS ESFÉRICA

Mensagempor LuizAquino » Qua Jun 06, 2012 09:40

ALEXSANDRO escreveu:Questão:
A equação p=5cos\Theta é dada em coordenadas esfericas. Expresse a equação em coordenadas retangulares e identifique a superficie.

Resolução

{x}^{2}+{y}^{2}+{z}^{2}=5z
{x}^{2}+{y}^{2}+{z}^{2}-5z=0
{x}^{2}+{y}^{2}+({z}^{2}-5z+5)=5
{x}^{2}+{y}^{2}+({z-5/2)}^{2}=5

Seria uma esfera (0,0,5/2) com raio 5/2

Esta correto este desenvolvimento?

Alguem pode me ajudar, se possivel?


Se você desenvolver o produto notável \left(z-\frac{5}{2}\right)^2 você obtém z^2 - 5z + 5 ?

Confira essa parte.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: COORDENADAS ESFÉRICA

Mensagempor ALEXSANDRO » Qua Jun 06, 2012 14:45

Ok, posso ter me passado ai.
Resolvendo o produto notavel não da isso, mas arrumando isso. o resultado está correto?
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: COORDENADAS ESFÉRICA

Mensagempor LuizAquino » Qua Jun 06, 2012 19:44

ALEXSANDRO escreveu:Ok, posso ter me passado ai.
Resolvendo o produto notavel não da isso, mas arrumando isso. o resultado está correto?


Se você estiver considerando que \Theta é o ângulo formado em relação ao eixo z, então estará correto quando você arrumar a questão do produto notável.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron