• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Assíntotas da hipérbole

Assíntotas da hipérbole

Mensagempor CarolMarques » Sáb Mai 26, 2012 11:41

A equação 7x²+24xy-256x-192y+1456=0 é uma hipérbole que por meio de rotação e translação eu cheguei numa equação reduzida x²/9-y²/16=1 o centro é C(8,6) e o angulo de rotação é o arc sen =3/5 (sen a =3/5 e cos a =4/5).Eu não sei achar as assintotas dessa hipérbole.Por favor me ajudem.
CarolMarques
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qui Mai 03, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Assíntotas da hipérbole

Mensagempor LuizAquino » Seg Mai 28, 2012 15:12

CarolMarques escreveu:A equação 7x²+24xy-256x-192y+1456=0 é uma hipérbole que por meio de rotação e translação eu cheguei numa equação reduzida x²/9-y²/16=1 o centro é C(8,6) e o angulo de rotação é o arc sen =3/5 (sen a =3/5 e cos a =4/5).


Ok. Mas é interessante você mudar as variáveis x e y conforme efetua as translações e rotações.

Por exemplo, ao realizar a translação você passou do sistema de eixos xOy para um outro sistema de eixos x'O'y'.

Em seguida, ao realizar a rotação você passou do sistema de eixos x'O'y' para um outro sistema de eixos uO''v.

Sendo assim, é interessante deixar a equação final com o formato:

\frac{u^2}{9} - \frac{v^2}{16} = 1

Isso ajuda a não fazer confusão sobre que sistema de eixos estamos no momento.

CarolMarques escreveu:Eu não sei achar as assintotas dessa hipérbole.


Se uma hipérbole é dada pela equação \frac{u^2}{a^2} - \frac{v^2}{a^2} = 1, então as assíntotas dessa hipérbole são v = \frac{b}{a}u e v = -\frac{b}{a}u .

Portanto, as assíntotas da hipérbole \frac{u^2}{9} - \frac{v^2}{16} = 1 são dadas por v = \frac{4}{3}u e v = -\frac{4}{3}u .

Precisamos agora aplicar uma rotação nessas assíntotas e depois uma translação. Desse modo, voltaremos para o sistema de eixos originais.

Para aplicar a rotação, basta realizar as substituições u = \frac{4}{5}x' + \frac{3}{5}y' e v = -\frac{3}{5}x' + \frac{4}{5}y'. Isso nos leva do sistema uOv para o sistema x'O'y'. Temos então que:

v = \frac{4}{3}u\implies x' = 0

v = -\frac{4}{3}u\implies y' = -\frac{7}{24}x'

Agora para aplicar a translação, basta realizar as substituições x' = x - 8 e y' = y - 6 . Isso nos leva do sistema x'O'y' para o sistema xOy. Temos então que:

x' = 0 \implies x = 8

y' = -\frac{7}{24}x' \implies y = -\frac{7}{24}x + \frac{25}{3}

Portanto, as equações das assíntotas no sistema xOy são dadas por x = 8 e y = -\frac{7}{24}x + \frac{25}{3} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}