• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetor e Produto Escalar

Vetor e Produto Escalar

Mensagempor camposhj » Ter Set 20, 2011 22:10

O quadrilátero ABCD é um losango de lado 2. Calcule:
a). AC.BC
b). AB.AD
c). BA.BC

Onde:
a- Eixo coordenado não pode estar no centro de gravidade da figura.
b- A figura tem que estar nos quatros quadrantes.
c- Eixos das coordenadas não podem coincidir com as diagonais.
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Vetor e Produto Escalar

Mensagempor LuizAquino » Qua Set 21, 2011 00:21

Note que há infinitos losangos que possuem lados medindo 2 u. c. (unidade de comprimento). Basta você construir um que lhe seja conveniente.

Além disso, perceba que como há infinitas construções haverá também infinitas soluções para esse exercício.

Por exemplo, na figura abaixo o losango ABCD tem lados medindo 2 u. c., A = \left(2,\,\frac{1}{2}\right) e os seus ângulos internos são 60° e 120° (na figura está ilustrado apenas metade de cada um deles). A partir disso você pode encontrar os outros vértices e calcular os produtos escalares desejados.

losango.png
losango.png (6.42 KiB) Exibido 5608 vezes
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetor e Produto Escalar

Mensagempor camposhj » Qua Set 21, 2011 00:34

Prof. Luiz Aquino como o senhor encontrou os pontos A (2,1/2) ?
Desculpe, mas não entendi.
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Vetor e Produto Escalar

Mensagempor LuizAquino » Qua Set 21, 2011 00:44

camposhj escreveu:Prof. Luiz Aquino como o senhor encontrou os pontos A (2,1/2) ?

Eu simplesmente escolhi! Como eu falei na mensagem anterior, há infinitas construções que podemos fazer nesse exercício. Você só precisa escolher uma.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetor e Produto Escalar

Mensagempor camposhj » Qua Set 21, 2011 09:10

Prof. Luiz

Mas e os demais pontos B,C e D eu escolho qquer ponto.
Nossa tô perdidinho nesse exercício.
Mais uma vez obrigado.
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Vetor e Produto Escalar

Mensagempor LuizAquino » Qua Set 21, 2011 12:12

camposhj escreveu:Mas e os demais pontos B,C e D eu escolho qquer ponto.

É claro que não! Os outros vértices você deve determinar levando em consideração que o losango que escolhemos construir tem lados medindo 2 u. c. e ângulos internos dados por 60° e 120°.

Por exemplo, seja B = (k, m). Note que podemos escrever que:

\begin{cases}
\textrm{sen}\,30^\circ = \frac{m-\frac{1}{2}}{2} \\
\cos 30^\circ = \frac{2 - k}{2} \\
\end{cases}

Lembrando-se que \textrm{sen}\,30^\circ = \frac{1}{2} e \cos 30^\circ = \frac{\sqrt{3}}{2}, obtemos que B = \left(2-\sqrt{3},\,\frac{3}{2}\right) .

Utilizando um procedimento análogo você pode determinar os outros vértices.

Mas lembre-se que algumas coordenadas dos outros vértices você não precisa mais calcular. Por exemplo, note que D = \left(2-\sqrt{3},\,r\right) (pois D na construção tem a mesma coordenada x do que B) e que C = \left(t,\,\frac{1}{2}\right) (pois C na construção tem a mesma coordenada y do que A). Portanto, você precisa apenas determinar o valor de r e t.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetor e Produto Escalar

Mensagempor camposhj » Qua Set 21, 2011 14:15

Valeu professor, obrigado pela ajuda.

Que Deus lhe ajude.
Se o senhor tiver alguma apostila com exercícios resolvidos, por gentileza me enviei pra mim dar uma estudada. Seguimos o livro de Prof. Paulo Winterle.
Meu email: camposhj@gmail.com
Abraços
Julio
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Vetor e Produto Escalar

Mensagempor LuizAquino » Qua Set 21, 2011 16:43

Um livro interessante é o do
camposhj escreveu:Se o senhor tiver alguma apostila com exercícios resolvidos, por gentileza me enviei pra mim dar uma estudada.

Tenho uma indicação que não é uma apostila, mas sim um livro. Trata-se do livro "Matrizes, Vetores e Geometria Analítica" de Reginaldo J. Santos. Esse livro está disponível na página pessoal de Santos:
Reginaldo J. Santos
http://www.mat.ufmg.br/~regi/
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetor e Produto Escalar

Mensagempor camposhj » Qua Set 21, 2011 17:56

Mais uma vez muitíssimo obrigado.
Abraços
Julio - Uberaba-MG
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Vetor e Produto Escalar

Mensagempor camposhj » Qua Set 28, 2011 22:06

Professor amanha é o dia de entregar o exercicio como forma de trabalho de Geometria Analitica e Vetor.
Tem como do senhor terminar de resolver o exercicio por favor, pra mim conferir se o que fiz esta certo?
Desde já agradeço.
Julio
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.