• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferença entre os produto escalar.

Diferença entre os produto escalar.

Mensagempor 380625 » Seg Ago 15, 2011 19:43

Por que quando vamos estudar produtos escalares e é considerado um sistema de coordenadas a formula esta sem o cos teta. . No livro do Boulos ele friza bem que se os vetores pertencem a uma base ortonormal o produto escalar é dado por u*v= x1y1 + x2y2 + x3y3

E pq na outra formula tem a informação que o produto escalar so depende do comprimento dos vetores e dos angulos entre eles. u*v= ||u|| . ||v|| cos teta.

O que acontece nesse caso.

Grato
Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Diferença entre os produto escalar.

Mensagempor LuizAquino » Seg Ago 15, 2011 21:32

380625 escreveu:Por que quando vamos estudar produtos escalares e é considerado um sistema de coordenadas a formula esta sem o cos teta. . No livro do Boulos ele friza bem que se os vetores pertencem a uma base ortonormal o produto escalar é dado por u*v= x1y1 + x2y2 + x3y3

E pq na outra formula tem a informação que o produto escalar so depende do comprimento dos vetores e dos angulos entre eles. u*v= ||u|| . ||v|| cos teta.


Vamos estudar com atenção o que está escrito no livro de Boulos (Geometria Analítica - um tratamento vetorial).

Ele primeiro define o que vem a ser ângulo entre vetores. Em seguida, ele quer determinar uma fórmula para calcular esse ângulo.

Ele toma então os vetores não nulos \vec{u}=(x_1,\,y_1,\,z_1) e \vec{v}=(x_2,\,y_2,\,z_2) escritos em uma base ortonormal. A escolha da base ortonormal é importante, pois facilita o cálculo do módulo dos vetores.

Aplicando a Lei dos Cossenos , ele obtém a seguinte equação:

||\vec{u}||\,||\vec{v}||\cos \theta = x_1x_2 + y_1y_2 + z_1z_2

Com essa equação ele obteve uma maneira de calcular o cosseno do ângulo entre os vetores. Basta dividir toda a equação por ||\vec{u}||\,||\vec{v}|| (o que poderá ser feito pois os vetores não são nulos):
\cos \theta = \frac{x_1x_2 + y_1y_2 + z_1z_2}{||\vec{u}||\,||\vec{v}||}

A partir de agora ele decide definir uma nova operação entre vetores, chamada de produto escalar:

\vec{u}\cdot \vec{v}
=
\begin{cases}
0\textrm{, se } \vec{u} = \vec{0}  \textrm{ ou } \vec{v} = \vec{0} \\
||\vec{u}||\,||\vec{v}||\cos \theta \textrm{, se } \vec{u} \neq \vec{0}  \textrm{ e } \vec{v} \neq \vec{0} \\
\end{cases}

Acontece que com essa definição escolhida por ele, considerando a equação anterior obtida através da Lei dos Cossenos, o produto escalar também pode ser escrito como:
\vec{u}\cdot \vec{v} = x_1x_2 + y_1y_2 + z_1z_2

Entretanto, o produto escalar só pode ser escrito dessa forma caso a base escolhida seja ortonormal. Caso contrário, a equação obtida através da Lei dos Cossenos seria outra e portanto a fórmula para o produto escalar também mudaria.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 25 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D