• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferença entre os produto escalar.

Diferença entre os produto escalar.

Mensagempor 380625 » Seg Ago 15, 2011 19:43

Por que quando vamos estudar produtos escalares e é considerado um sistema de coordenadas a formula esta sem o cos teta. . No livro do Boulos ele friza bem que se os vetores pertencem a uma base ortonormal o produto escalar é dado por u*v= x1y1 + x2y2 + x3y3

E pq na outra formula tem a informação que o produto escalar so depende do comprimento dos vetores e dos angulos entre eles. u*v= ||u|| . ||v|| cos teta.

O que acontece nesse caso.

Grato
Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Diferença entre os produto escalar.

Mensagempor LuizAquino » Seg Ago 15, 2011 21:32

380625 escreveu:Por que quando vamos estudar produtos escalares e é considerado um sistema de coordenadas a formula esta sem o cos teta. . No livro do Boulos ele friza bem que se os vetores pertencem a uma base ortonormal o produto escalar é dado por u*v= x1y1 + x2y2 + x3y3

E pq na outra formula tem a informação que o produto escalar so depende do comprimento dos vetores e dos angulos entre eles. u*v= ||u|| . ||v|| cos teta.


Vamos estudar com atenção o que está escrito no livro de Boulos (Geometria Analítica - um tratamento vetorial).

Ele primeiro define o que vem a ser ângulo entre vetores. Em seguida, ele quer determinar uma fórmula para calcular esse ângulo.

Ele toma então os vetores não nulos \vec{u}=(x_1,\,y_1,\,z_1) e \vec{v}=(x_2,\,y_2,\,z_2) escritos em uma base ortonormal. A escolha da base ortonormal é importante, pois facilita o cálculo do módulo dos vetores.

Aplicando a Lei dos Cossenos , ele obtém a seguinte equação:

||\vec{u}||\,||\vec{v}||\cos \theta = x_1x_2 + y_1y_2 + z_1z_2

Com essa equação ele obteve uma maneira de calcular o cosseno do ângulo entre os vetores. Basta dividir toda a equação por ||\vec{u}||\,||\vec{v}|| (o que poderá ser feito pois os vetores não são nulos):
\cos \theta = \frac{x_1x_2 + y_1y_2 + z_1z_2}{||\vec{u}||\,||\vec{v}||}

A partir de agora ele decide definir uma nova operação entre vetores, chamada de produto escalar:

\vec{u}\cdot \vec{v}
=
\begin{cases}
0\textrm{, se } \vec{u} = \vec{0}  \textrm{ ou } \vec{v} = \vec{0} \\
||\vec{u}||\,||\vec{v}||\cos \theta \textrm{, se } \vec{u} \neq \vec{0}  \textrm{ e } \vec{v} \neq \vec{0} \\
\end{cases}

Acontece que com essa definição escolhida por ele, considerando a equação anterior obtida através da Lei dos Cossenos, o produto escalar também pode ser escrito como:
\vec{u}\cdot \vec{v} = x_1x_2 + y_1y_2 + z_1z_2

Entretanto, o produto escalar só pode ser escrito dessa forma caso a base escolhida seja ortonormal. Caso contrário, a equação obtida através da Lei dos Cossenos seria outra e portanto a fórmula para o produto escalar também mudaria.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?