• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida... A prova é hoje (Distância entreo ponto e o plano)

Dúvida... A prova é hoje (Distância entreo ponto e o plano)

Mensagempor valeuleo » Ter Mai 10, 2011 12:20

Estou resolvendo uma lista de geometria analítica e me deparei com uma questão onde o resultado que obtenho nuca é igual ao da apostila. A questão é:

Determine a distância do ponto D(2,3,3) ao plano determinado pelos pontos A(3,3,1), B(1,1,-3) e C(-1,3,0).

Eu obtenho a resposta \frac{25 \sqrt[]{174}}{174}. Mas a correta é \frac{5\sqrt[]{174}}{58}

Me ajudem é urgente. Fiz todos os cálculos através da fórmula D = \frac{\left|ax+by+cz+d \right|}{\left|\sqrt[]{{a}^{2}+{b}^{2}+{c}^{2}} \right|}

Escolhi os valores do ponto A para representarem x, y e z.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Dúvida... A prova é hoje (Distância entreo ponto e o pla

Mensagempor LuizAquino » Qua Mai 11, 2011 10:30

O plano deve conter os pontos:
A = (3, 3, 1)
B = (1, 1, -3)
C = (-1, 3, 0)

Temos que:
\vec{AB} = (-2,\, -2,\, -4)
\vec{AC} = (-4,\, 0,\, -1)

O vetor normal a esse plano será:
\vec{n} = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k}\\ -2 & -2 & -4 \\ -4 & 0 & -1\end{vmatrix} = 2\vec{i} + 14\vec{j} - 8\vec{k}

O plano contém, por exemplo, o ponto A. Sendo assim, temos que:
2(x - 3) + 14(y - 3) - 8(z - 1) = 0
x + 7y - 4z - 20 = 0

A distância entre o ponto D = (2, 3, 3) e esse plano será:
d = \frac{|2 + 7\cdot 3 - 4\cdot 3 - 20|}{\sqrt{1^2 + 7^2 + (-4)^2}} = \frac{3\sqrt{66}}{22}
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.