• Anúncio Global
    Respostas
    Exibições
    Última mensagem

uma circunferência de centro no ponto....

uma circunferência de centro no ponto....

Mensagempor willwgo » Qua Abr 13, 2011 17:57

8-uma circunferência de centro no ponto q(2,0) passa pelo ponto de encontro das retas R e S de equações
x-y-2=0 e x+y-6=0, respectivamente.qual é a equação dessa circunferência?

bom a resposta que eu axei foi:
{(x-8)}^{2}+{(y+2)}^{2}=40
mais nau sei se está correto me ajudem a axar a resposta certa, e me mostrem como chegaram ao resultado.
obrigado
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: uma circunferência de centro no ponto....

Mensagempor FilipeCaceres » Qua Abr 13, 2011 20:10

Vamos chamar de P o ponto de intersecção das duas retas.
\left\{\begin{matrix}
x-y= &2 \\ 
x+y= &6 
\end{matrix}\right.

Assim temos que P(4,2) e Q(2,0)

Como a circunferência passa pelo ponto P, se nós calcularmos a distância do ponto P até Q vamos encontar o raio,logo:
d_{P,Q}=\sqrt{(4-2)^2+(2-0)^2}=2\sqrt{2}

Como a equação reduzida de circunferência é dada por:
C:(x-x_0)^2+(y-y_0)^2=r^2 ; onde x_0,y_0 representa o ponto do centro da circunferência.

Portanto temos,
C:(x-2)^2+(y-0)^2=(2\sqrt{2})^2

C:(x-2)^2+y^2=8

Espero que seja isso.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: uma circunferência de centro no ponto....

Mensagempor willwgo » Qui Abr 14, 2011 16:10

obrigado!
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: uma circunferência de centro no ponto....

Mensagempor FilipeCaceres » Qui Abr 14, 2011 16:18

Se nós somarmos as duas equações vamos encontrar,
2x=8 \rightarrow x=4 deve ter sido aqui que você errou. Sabendo x é de imediato que y=2.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}