• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distância de ponto à reta

Distância de ponto à reta

Mensagempor Jonatan » Qua Jul 07, 2010 11:24

Pessoal, estava aqui estudando questões referente ao capítulo de distância de ponto à reta e me deparei com a seguinte questão, fonte UFMG:

Determine a equação da bissetriz do menor ângulo formado pelas retas de equações y = 0 e y = 3x.

Tentando fazer:

Chamei de reta r a de equação y = 0, {m}_{r} = 0
Chamei de reta s a de equação y = 3, {m}_{s} = 3

Concluí que a reta r é o próprio eixo x, correto? E a reta s é função linear (passa pela origem, tem seu coeficiente linear nulo; coeficiente angular diferente de zero), correto?
A partir daí, não sei como andar no exercício, o que faço agora? Grato desde já.
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Distância de ponto à reta

Mensagempor Tom » Qua Jul 07, 2010 13:11

Seja r:y=0, cujo coeficiente angular é m_r=0, e s:y=3x, cujo coeficiente angular é m_s=3.

Da interpretação geométrica do coeficiente angular, podemos calcular o ângulo agudo \theta formado pelas retas:

Como m_r=0, decorre que tg\theta=3, isto é, \theta é o ângulo que a reta s faz com a reta r, portanto, com o eixo Ox já que, de fato, a reta y=0 é o próprio eixo das abicissas.

Queremos a equação da bissetirz interna do ângulo \theta. Note que o coeficiente linear da reta supracitada será nulo, já que a mesma também passa pela origem assim como as demais retas em questão. Além disso o ângulo que a reta bissetriz forma com o eixo Ox é \dfrac{\theta}{2}, em decorrência da definição de bissetriz.

Concluímos assim, que o coeficiente angular da reta bissetriz será numericamente igual a: tg(\frac{\theta}{2})

Usando a relação de duplicação do arco para a função tangente, temos: tg(\theta)=\dfrac{2tg\frac{\theta}{2}}{1-tg^2\frac{\theta}{2}}

Chamando tg(\dfrac{\theta}{2})=k, como tg(\theta)=3, temos:

3=\dfrac{2k}{1-k^2}\rightarrow 3k^2+2k-3=0 e decorre em, k=\dfrac{-2\pm\sqrt{40}}{6}, e como esse valor deve ser positivo pois o ângulo pertence ao primeiro quadrante, k=\dfrac{-1+\sqrt{10}}{3}, que é o coeficiente angular da bissetriz.


Assim, a equação da reta bissetriz é: y=\dfrac{(-1+\sqrt{10})x}{3}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 20 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D