• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria analítica : Vetor unitário ortogonal

Geometria analítica : Vetor unitário ortogonal

Mensagempor isabellasimao » Sáb Abr 11, 2020 15:37

Oii gente, primeira vez no fórum então me desculpem qualquer coisa, a questão é a seguinte:
Encontre um vetor unitário que seja ortogonal ao plano que passa pelos pontos A(1,1,0), B(1,0,1) e C(0,1,1).
O problema é que eu não sei nem por onde começar, eu sei fazer um vetor ortogonal que passa por esses pontos, mas eu não sei o que seria um "vetor unitário" e o que isso muda na resolução, se alguém puder me ajudar eu ficaria grata.
isabellasimao
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 29, 2020 16:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia
Andamento: cursando

Re: Geometria analítica : Vetor unitário ortogonal

Mensagempor adauto martins » Dom Abr 12, 2020 19:33

vamos tomar os vetores

AB=B-A=(1,0,1)-(1,1,0)=(1-1,0-1,1-0)=(0,-1,1)

AC=C-A=(0,1,1)-(1,1,0)=(0-1,1-1,1-0)=(-1,0,1)

AB e AC,teem que ser linearmente independentes(LI)

para verificar tal condiçao,teriamos que ter

xAB+yAC=0 \Leftrightarrow x=y=0
fica como exercicio...
entao suporemos AB,AC (LI)

o produto vetorial AB X AC é perpendicular(ortogonal) ao plano gerado por AB,AC
logo,vamos tomar

v=AB X AC=
\begin{vmatrix}
   i & j & k \\ 
   0 & -1 & 1 \\
   -1 & 0 & 1 \\
 
\end{vmatrix}
=(-i-j+0)-(k+0+0)=-i-j-k=(-1,-1,-1)


o unitario de v é

{u}_{v}=(v/\left|v \right|)

\left|v \right|=\sqrt[]{(-1)^2+(-1)^2+(-1)^2}=\sqrt[]{3}

{u}_{v}=(-1/\sqrt[]{3},-1/\sqrt[]{3},-1/\sqrt[]{3})

...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Geometria analítica : Vetor unitário ortogonal

Mensagempor isabellasimao » Qua Abr 15, 2020 15:14

adauto martins escreveu:vamos tomar os vetores

AB=B-A=(1,0,1)-(1,1,0)=(1-1,0-1,1-0)=(0,-1,1)

AC=C-A=(0,1,1)-(1,1,0)=(0-1,1-1,1-0)=(-1,0,1)

AB e AC,teem que ser linearmente independentes(LI)

para verificar tal condiçao,teriamos que ter

xAB+yAC=0 \Leftrightarrow x=y=0
fica como exercicio...
entao suporemos AB,AC (LI)

o produto vetorial AB X AC é perpendicular(ortogonal) ao plano gerado por AB,AC
logo,vamos tomar

v=AB X AC=
\begin{vmatrix}
   i & j & k \\ 
   0 & -1 & 1 \\
   -1 & 0 & 1 \\
 
\end{vmatrix}
=(-i-j+0)-(k+0+0)=-i-j-k=(-1,-1,-1)


o unitario de v é

{u}_{v}=(v/\left|v \right|)

\left|v \right|=\sqrt[]{(-1)^2+(-1)^2+(-1)^2}=\sqrt[]{3}

{u}_{v}=(-1/\sqrt[]{3},-1/\sqrt[]{3},-1/\sqrt[]{3})

...


Obrigada, sua explicação foi muito esclarecedora!!
isabellasimao
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 29, 2020 16:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 22 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?