• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria analítica : Vetor unitário ortogonal

Geometria analítica : Vetor unitário ortogonal

Mensagempor isabellasimao » Sáb Abr 11, 2020 15:37

Oii gente, primeira vez no fórum então me desculpem qualquer coisa, a questão é a seguinte:
Encontre um vetor unitário que seja ortogonal ao plano que passa pelos pontos A(1,1,0), B(1,0,1) e C(0,1,1).
O problema é que eu não sei nem por onde começar, eu sei fazer um vetor ortogonal que passa por esses pontos, mas eu não sei o que seria um "vetor unitário" e o que isso muda na resolução, se alguém puder me ajudar eu ficaria grata.
isabellasimao
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 29, 2020 16:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia
Andamento: cursando

Re: Geometria analítica : Vetor unitário ortogonal

Mensagempor adauto martins » Dom Abr 12, 2020 19:33

vamos tomar os vetores

AB=B-A=(1,0,1)-(1,1,0)=(1-1,0-1,1-0)=(0,-1,1)

AC=C-A=(0,1,1)-(1,1,0)=(0-1,1-1,1-0)=(-1,0,1)

AB e AC,teem que ser linearmente independentes(LI)

para verificar tal condiçao,teriamos que ter

xAB+yAC=0 \Leftrightarrow x=y=0
fica como exercicio...
entao suporemos AB,AC (LI)

o produto vetorial AB X AC é perpendicular(ortogonal) ao plano gerado por AB,AC
logo,vamos tomar

v=AB X AC=
\begin{vmatrix}
   i & j & k \\ 
   0 & -1 & 1 \\
   -1 & 0 & 1 \\
 
\end{vmatrix}
=(-i-j+0)-(k+0+0)=-i-j-k=(-1,-1,-1)


o unitario de v é

{u}_{v}=(v/\left|v \right|)

\left|v \right|=\sqrt[]{(-1)^2+(-1)^2+(-1)^2}=\sqrt[]{3}

{u}_{v}=(-1/\sqrt[]{3},-1/\sqrt[]{3},-1/\sqrt[]{3})

...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Geometria analítica : Vetor unitário ortogonal

Mensagempor isabellasimao » Qua Abr 15, 2020 15:14

adauto martins escreveu:vamos tomar os vetores

AB=B-A=(1,0,1)-(1,1,0)=(1-1,0-1,1-0)=(0,-1,1)

AC=C-A=(0,1,1)-(1,1,0)=(0-1,1-1,1-0)=(-1,0,1)

AB e AC,teem que ser linearmente independentes(LI)

para verificar tal condiçao,teriamos que ter

xAB+yAC=0 \Leftrightarrow x=y=0
fica como exercicio...
entao suporemos AB,AC (LI)

o produto vetorial AB X AC é perpendicular(ortogonal) ao plano gerado por AB,AC
logo,vamos tomar

v=AB X AC=
\begin{vmatrix}
   i & j & k \\ 
   0 & -1 & 1 \\
   -1 & 0 & 1 \\
 
\end{vmatrix}
=(-i-j+0)-(k+0+0)=-i-j-k=(-1,-1,-1)


o unitario de v é

{u}_{v}=(v/\left|v \right|)

\left|v \right|=\sqrt[]{(-1)^2+(-1)^2+(-1)^2}=\sqrt[]{3}

{u}_{v}=(-1/\sqrt[]{3},-1/\sqrt[]{3},-1/\sqrt[]{3})

...


Obrigada, sua explicação foi muito esclarecedora!!
isabellasimao
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 29, 2020 16:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}