• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Vetores] Dependência e Independência linear

[Vetores] Dependência e Independência linear

Mensagempor Eli Andrade » Seg Fev 04, 2019 16:29

Boa tarde! Resolvi uma questão sobre independência linear, mas no gabarito diz apenas se é verdadeira ou falsa, então gostaria de saber se respondi corretamente a seguinte questão:

Os vetores \vec{a} = (1, h, 0) , \vec{b} = (1, 0, k) e \vec{c} = (0,1,1) serão linearmente independentes desde que as constantes h,k \in \bkRrm{\rm I\kern-.17em R} sejam ambas diferentes de zero.


Eu comecei a responder levantando as seguintes questões:
1. Sempre serão LI caso a condição "h, k ambas diferentes de zero" seja atendida?
2. Se apenas h ou apenas k for diferente de zero os vetores serão LI?
*Note que se os vetores forem LD mesmo que as constantes h, k sejam ambas diferentes de zero a questão será falsa

Primeiro calculei o determinante, tendo noção de que Det = 0 é LD e Det ≠ 0 é LI
\begin{vmatrix}
   1 & h & 0 \\ 
   1 & 0 & k \\ 
   0 & 1 & 1 \\ 
 
\end{vmatrix}
= -k -h
A partir disso notei que se k = h o determinante seria ≠ 0, logo os vetores seriam LI. Caso k = -h, o determinante seria = 0, e os vetores LD.

Por fim, considerei k = 2, h = -2, tendo:
\begin{vmatrix}
   1 & -2 & 0 \\ 
   1 & 0 & 2 \\ 
   0 & 1 & 1 \\ 
 
\end{vmatrix}
= -2 + 2 = 0

Com isso, conclui que mesmo que h,k sejam ambas diferentes de zero, os vetores não serão sempre LI, caso k = -h eles serão LD. Logo, a questão é FALSA.



Tenho mais duas perguntas acerca desse enunciado:
1) Como resolver essa questão a partir de sistemas? Calculei, mas não consegui concluir muita coisa com \begin{cases}
{a}_{1} + {a}_{2} = 0\\
{a}_{1}h + {a}_{3} = 0 \\
{a}_{2}k + {a}_{3} = 0 
\end{cases} . Só tive a mesma noção ao fazer a combinação linear, considerando a condição que obtive a partir do determinante.

2) Existe um método mais rápido de responder questões como essa? Calculei sendo ambas igual a zero, ambas diferentes de zero e apenas uma sendo zero, antes de ter esse raciocínio.

Obrigada!
Eli Andrade
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 02, 2019 16:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Arquitetura e Urbanismo
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59