• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações de plano] encontrar a equação de um plano

[Equações de plano] encontrar a equação de um plano

Mensagempor GHT1810 » Ter Jul 03, 2018 19:42

Obtenha uma equação geral do plano π, em relação ao sistema ortogonal de coordenadas Σ, que
contém o ponto P = (1 , 1 , 2) e é paralelo ao plano π1, cuja equação geral, em relação ao sistema de
coordenadas Σ, é dada por π1 : x − y + 2 z + 1 = 0

Eu tentei fazer da seguinte forma:
1 Como os planos são paralelos o vetor normal utilizado para encontrar a eq geral de π1 é tbm normal ao plano π.
2 Assim o vetor (1,-1,2) seria normal tbm a π
3 coloquei como : ax+by+cz+d=0
ficando x-y+2z+d=0
4 e coloquei o ponto P para encontrar d
ficando d=4
5 e o plano π ficaria : π:x-y+2z+4=0 mas achei estranho eles serem tão parecidos , a afirmação 1 é correta???
GHT1810
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jul 03, 2018 19:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de produção
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}