• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Posições de pontos]: placa móvel em base quadrada

[Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Qua Abr 25, 2018 18:14

Boa tarde!

Preciso ajudar um irmão com a automatização de uma máquina que perfura placas para colocação de componentes eletrônicos. A máquina contém uma base quadrada onde se coloca a placa a ser perfurada. Vamos considerar a base quadrada como sendo um plano cartesiano com as extremidades nos pontos A(0,0), B(100,0), C(100,100) e D(0,100), mensuradas em centímetros. Não encontrei pergunta semelhante já publicada...

A ideia dele é construir um algoritmo que permita à máquina calcular a localização exata de dois pontos quaisquer da placa e, a partir da localização destes, o algoritmo calcularia a localização de tantos outros pontos a serem perfurados e faria a perfuração de forma automatizada. Pois bem, suponhamos que a perfuração vá demorar mais de um dia. Ora, a placa precisará ser fixada a cada dia para continuar as perfurações. Suponhamos que, num desses dias, a placa não tenha sido fixada precisamente no mesmo local onde foi fixada no dia anterior. Isto provocaria um desastre na placa! Por outro lado, seria maçante o operador da máquina ter de assegurar-se de que a placa foi fixada sempre na mesma posição...

Assim, independentemente da posição de fixação da placa na base em cada dia, um algoritmo eficiente faria os cálculos e "saberia" onde continuar a perfurar.

Penso que a solução precisa considerar que a nova posição da placa sobre a base, nos dias seguintes, pode ser outra, não apenas horizontalmente ou verticalmente, mas também pode haver alguma inclinação, o que implica que a solução deva ser preparada para lidar com distâncias entre pontos e ângulos (creio eu... não sei por onde começar!). Tentei representar esta situação em figuras.

Trocando em linguagem matemática, a partir das figuras, que fórmula seria capaz de calcular as coordenadas dos pontos X0, X1, Y0 e Y1 na base da máquina (o plano cartesiano de 100cm x 100cm) em cada dia, para dar continuidade às perfurações?

Aguardo suas valiosas contribuições!
Anexos
Placas máquina irmão.png
Placas máquina irmão.png (4.71 KiB) Exibido 501 vezes
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Seg Mai 07, 2018 23:00

Boa noite!

Ninguém tem alguma ideia de como ajudar?
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?