• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Posições de pontos]: placa móvel em base quadrada

[Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Qua Abr 25, 2018 18:14

Boa tarde!

Preciso ajudar um irmão com a automatização de uma máquina que perfura placas para colocação de componentes eletrônicos. A máquina contém uma base quadrada onde se coloca a placa a ser perfurada. Vamos considerar a base quadrada como sendo um plano cartesiano com as extremidades nos pontos A(0,0), B(100,0), C(100,100) e D(0,100), mensuradas em centímetros. Não encontrei pergunta semelhante já publicada...

A ideia dele é construir um algoritmo que permita à máquina calcular a localização exata de dois pontos quaisquer da placa e, a partir da localização destes, o algoritmo calcularia a localização de tantos outros pontos a serem perfurados e faria a perfuração de forma automatizada. Pois bem, suponhamos que a perfuração vá demorar mais de um dia. Ora, a placa precisará ser fixada a cada dia para continuar as perfurações. Suponhamos que, num desses dias, a placa não tenha sido fixada precisamente no mesmo local onde foi fixada no dia anterior. Isto provocaria um desastre na placa! Por outro lado, seria maçante o operador da máquina ter de assegurar-se de que a placa foi fixada sempre na mesma posição...

Assim, independentemente da posição de fixação da placa na base em cada dia, um algoritmo eficiente faria os cálculos e "saberia" onde continuar a perfurar.

Penso que a solução precisa considerar que a nova posição da placa sobre a base, nos dias seguintes, pode ser outra, não apenas horizontalmente ou verticalmente, mas também pode haver alguma inclinação, o que implica que a solução deva ser preparada para lidar com distâncias entre pontos e ângulos (creio eu... não sei por onde começar!). Tentei representar esta situação em figuras.

Trocando em linguagem matemática, a partir das figuras, que fórmula seria capaz de calcular as coordenadas dos pontos X0, X1, Y0 e Y1 na base da máquina (o plano cartesiano de 100cm x 100cm) em cada dia, para dar continuidade às perfurações?

Aguardo suas valiosas contribuições!
Anexos
Placas máquina irmão.png
Placas máquina irmão.png (4.71 KiB) Exibido 291 vezes
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Seg Mai 07, 2018 23:00

Boa noite!

Ninguém tem alguma ideia de como ajudar?
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.