• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Posições de pontos]: placa móvel em base quadrada

[Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Qua Abr 25, 2018 18:14

Boa tarde!

Preciso ajudar um irmão com a automatização de uma máquina que perfura placas para colocação de componentes eletrônicos. A máquina contém uma base quadrada onde se coloca a placa a ser perfurada. Vamos considerar a base quadrada como sendo um plano cartesiano com as extremidades nos pontos A(0,0), B(100,0), C(100,100) e D(0,100), mensuradas em centímetros. Não encontrei pergunta semelhante já publicada...

A ideia dele é construir um algoritmo que permita à máquina calcular a localização exata de dois pontos quaisquer da placa e, a partir da localização destes, o algoritmo calcularia a localização de tantos outros pontos a serem perfurados e faria a perfuração de forma automatizada. Pois bem, suponhamos que a perfuração vá demorar mais de um dia. Ora, a placa precisará ser fixada a cada dia para continuar as perfurações. Suponhamos que, num desses dias, a placa não tenha sido fixada precisamente no mesmo local onde foi fixada no dia anterior. Isto provocaria um desastre na placa! Por outro lado, seria maçante o operador da máquina ter de assegurar-se de que a placa foi fixada sempre na mesma posição...

Assim, independentemente da posição de fixação da placa na base em cada dia, um algoritmo eficiente faria os cálculos e "saberia" onde continuar a perfurar.

Penso que a solução precisa considerar que a nova posição da placa sobre a base, nos dias seguintes, pode ser outra, não apenas horizontalmente ou verticalmente, mas também pode haver alguma inclinação, o que implica que a solução deva ser preparada para lidar com distâncias entre pontos e ângulos (creio eu... não sei por onde começar!). Tentei representar esta situação em figuras.

Trocando em linguagem matemática, a partir das figuras, que fórmula seria capaz de calcular as coordenadas dos pontos X0, X1, Y0 e Y1 na base da máquina (o plano cartesiano de 100cm x 100cm) em cada dia, para dar continuidade às perfurações?

Aguardo suas valiosas contribuições!
Anexos
Placas máquina irmão.png
Placas máquina irmão.png (4.71 KiB) Exibido 512 vezes
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Seg Mai 07, 2018 23:00

Boa noite!

Ninguém tem alguma ideia de como ajudar?
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59