• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Posições de pontos]: placa móvel em base quadrada

[Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Qua Abr 25, 2018 18:14

Boa tarde!

Preciso ajudar um irmão com a automatização de uma máquina que perfura placas para colocação de componentes eletrônicos. A máquina contém uma base quadrada onde se coloca a placa a ser perfurada. Vamos considerar a base quadrada como sendo um plano cartesiano com as extremidades nos pontos A(0,0), B(100,0), C(100,100) e D(0,100), mensuradas em centímetros. Não encontrei pergunta semelhante já publicada...

A ideia dele é construir um algoritmo que permita à máquina calcular a localização exata de dois pontos quaisquer da placa e, a partir da localização destes, o algoritmo calcularia a localização de tantos outros pontos a serem perfurados e faria a perfuração de forma automatizada. Pois bem, suponhamos que a perfuração vá demorar mais de um dia. Ora, a placa precisará ser fixada a cada dia para continuar as perfurações. Suponhamos que, num desses dias, a placa não tenha sido fixada precisamente no mesmo local onde foi fixada no dia anterior. Isto provocaria um desastre na placa! Por outro lado, seria maçante o operador da máquina ter de assegurar-se de que a placa foi fixada sempre na mesma posição...

Assim, independentemente da posição de fixação da placa na base em cada dia, um algoritmo eficiente faria os cálculos e "saberia" onde continuar a perfurar.

Penso que a solução precisa considerar que a nova posição da placa sobre a base, nos dias seguintes, pode ser outra, não apenas horizontalmente ou verticalmente, mas também pode haver alguma inclinação, o que implica que a solução deva ser preparada para lidar com distâncias entre pontos e ângulos (creio eu... não sei por onde começar!). Tentei representar esta situação em figuras.

Trocando em linguagem matemática, a partir das figuras, que fórmula seria capaz de calcular as coordenadas dos pontos X0, X1, Y0 e Y1 na base da máquina (o plano cartesiano de 100cm x 100cm) em cada dia, para dar continuidade às perfurações?

Aguardo suas valiosas contribuições!
Anexos
Placas máquina irmão.png
Placas máquina irmão.png (4.71 KiB) Exibido 330 vezes
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Posições de pontos]: placa móvel em base quadrada

Mensagempor elildoir » Seg Mai 07, 2018 23:00

Boa noite!

Ninguém tem alguma ideia de como ajudar?
elildoir
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 25, 2018 18:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D