• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício geometria do ponto

Exercício geometria do ponto

Mensagempor aninhapmello25 » Seg Abr 16, 2018 11:57

Alguém pode me ajudar a resolver esses dois exercícios de geometria do ponto?
Anexos
E4AFCB45-464A-45E2-9600-D57AEAB11B20.jpeg
aninhapmello25
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 16, 2018 11:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercício geometria do ponto

Mensagempor Gebe » Seg Abr 16, 2018 19:48

Primeiramente devo dizer que na primeira questão falta informação. Note que não é dito qual é o eixo de giro, ou seja, não é falado se devemos girar o segmento mantendo A fixo, ou B fixo, ou qualquer outro ponto. Vou supor que seja o ponto A.

- Quando giramos um segmneto de reta 90° horario ou anti-horario (geometrico no exercicio), estaremos produzindo um segundo segmento que é dito perpendicular ao primeiro (está a 90° do primeiro).

- Vamos começar calculando o coeficiente angular do primeiro segmento \left( m_1 \right):

\\
m_1=\frac{y_b-y_a}{x_b-x_a}\\
\\
m_1=\frac{2-1}{2-(-1)}\\
\\
m_1=\frac{1}{3}\\
\\

Calculamos este coeficiente, pois o coeficiente angular do segmento perpendicular deverá ser igual ao oposto inverso de m_1, ou seja, m_2 deverá ser igual a:
\\
m_2=-\left(m_1 \right)^{-1}\\
\\
m_2=-\left(\frac{1}{3} \right)^{-1}\\
\\
m_2=-\left( \frac{3}{1} \right)\\
\\
m_2=- \frac{3}{1}

Obs.: Deixe em fração ;)

Assim m2 deverá ser o coeficiente angular do segmento entre o ponto A e um C (ou D) que ainda não sabemos.
O coeficiente m2 pode ser calculado como feito anteriormente:
\\
m_2=\frac{y_c-y_a}{x_c-x_a}\\
\\
m_2=\frac{y_c-1}{x_c-(-1)}\\
\\
m_2=\frac{y_c-1}{x_c-(-1)}=-\frac{3}{1}

Agora o que podemos fazer é igualar os numeradores e igualar os denominadores para achar possiveis yc e xc.
- No entanto, note que temos um sinal (negativo) neste coeficiente, este sinal pode ser gerado de duas formas, numerador negativo e denominador positivo ou numerador positivo e denominador negativo.
- Estas duas possibilidades, exploradas logo abaixo, darão 2 yc's e 2 xc's diferentes, uma será para o giro horario e a outra para o giro anti-horario.

\\
y_c-1=-3\\
\\
x_c+1=1\\
\\
ou\\
\\
y_c-1=3\\
\\
x_c+1=-1\\

Resolvendo a primeira possibilidade temos:
\\
y_c=-2\\
\\
x_c=0\\
\\


Resolvendo a primeira possibilidade temos:
\\
y_d=4\\
\\
x_d=-2\\
\\

Espero ter ajudado, qualquer duvida deixe msg. Assim que puder tento resolver a outra questão (caso não tenham ainda).
Obs.: No desenho vermelho é o seg original, azul giro horario e verde anti-horario
Anexos
sda.png
sda.png (6.58 KiB) Exibido 188 vezes
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 95
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron