• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Cálculo de um ponto

[Geometria Analítica] Cálculo de um ponto

Mensagempor GamerVSL » Ter Fev 27, 2018 13:16

Bom dia,

estou com dificuldade em montar um fórmula. Eu possuo 2 pontos (x0, y0) e (x1, y1) e um ângulo (xº), a partir dessas informações preciso calcular um terceiro ponto que esteja a x graus dos 2 anteriores. É possível fazer isso? Agradeço a atenção.
GamerVSL
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Fev 27, 2018 13:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de sistemas
Andamento: formado

Re: [Geometria Analítica] Cálculo de um ponto

Mensagempor DarioCViveiros » Qui Mar 01, 2018 23:10

Boa noite, espero que veja essa mensagem apesar da espera.
Se existem dois pontos \left({x}_{0},{y}_{0} \right) e \left({x}_{1},{y}_{1} \right)

e esses formarem uma reta, é possível calcular o coeficiente angular m=tan(x)

através de um determinante, basta fazer:

\begin{vmatrix}
   {x}_{0} & {y}_{0} & 1  \\ 
   {x}_{1} & {y}_{1} & 1\\
   x & y & 1
\end{vmatrix}

ao calcular o determinante com tais valores, conseguirá a equação da reta geral, ou seja, na forma ax + by = c
Em seguida, isola-se o y:

by=c-ax

y=-\frac{a}{b}x+\frac{c}{b}

m=-\frac{a}{b}

n=\frac{c}{b}

y=mx+n

m é chamado de coeficiente angular e, equivale à tangente do ângulo entre a reta e o eixo das abscissas (x). Enquanto que n o coeficiente angular e corresponde à "altura" do ponto em que a reta cruza o eixo das ordenadas (y).
Logo, basta verificar a qual ângulo equivale a tangente encontrada, o que pode ser feito através de uma tabela ou da função inversa

{tan}^{-1}x=\frac{1}{tan(x)}

a qual retornará um valor em radiano, logo, nesse caso, é necessário fazer a conversão para graus, caso seja necessário, caso contrário, verificar em uma tabela deve servir.

Espero ter ajudado.
DarioCViveiros
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 21, 2018 16:33
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}