• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Cálculo de um ponto

[Geometria Analítica] Cálculo de um ponto

Mensagempor GamerVSL » Ter Fev 27, 2018 13:16

Bom dia,

estou com dificuldade em montar um fórmula. Eu possuo 2 pontos (x0, y0) e (x1, y1) e um ângulo (xº), a partir dessas informações preciso calcular um terceiro ponto que esteja a x graus dos 2 anteriores. É possível fazer isso? Agradeço a atenção.
GamerVSL
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Fev 27, 2018 13:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de sistemas
Andamento: formado

Re: [Geometria Analítica] Cálculo de um ponto

Mensagempor DarioCViveiros » Qui Mar 01, 2018 23:10

Boa noite, espero que veja essa mensagem apesar da espera.
Se existem dois pontos \left({x}_{0},{y}_{0} \right) e \left({x}_{1},{y}_{1} \right)

e esses formarem uma reta, é possível calcular o coeficiente angular m=tan(x)

através de um determinante, basta fazer:

\begin{vmatrix}
   {x}_{0} & {y}_{0} & 1  \\ 
   {x}_{1} & {y}_{1} & 1\\
   x & y & 1
\end{vmatrix}

ao calcular o determinante com tais valores, conseguirá a equação da reta geral, ou seja, na forma ax + by = c
Em seguida, isola-se o y:

by=c-ax

y=-\frac{a}{b}x+\frac{c}{b}

m=-\frac{a}{b}

n=\frac{c}{b}

y=mx+n

m é chamado de coeficiente angular e, equivale à tangente do ângulo entre a reta e o eixo das abscissas (x). Enquanto que n o coeficiente angular e corresponde à "altura" do ponto em que a reta cruza o eixo das ordenadas (y).
Logo, basta verificar a qual ângulo equivale a tangente encontrada, o que pode ser feito através de uma tabela ou da função inversa

{tan}^{-1}x=\frac{1}{tan(x)}

a qual retornará um valor em radiano, logo, nesse caso, é necessário fazer a conversão para graus, caso seja necessário, caso contrário, verificar em uma tabela deve servir.

Espero ter ajudado.
DarioCViveiros
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 21, 2018 16:33
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.