• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Círculo inscrito num quadrado

Círculo inscrito num quadrado

Mensagempor roninhasmr » Qui Fev 08, 2018 22:06

Tenho essa duvida preciso de resolver com cálculos obrigado
Anexos
DD36D1C6-3B39-42F9-B0B3-D984D75A8562.jpeg
roninhasmr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Nov 13, 2017 14:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Círculo inscrito num quadrado

Mensagempor Baltuilhe » Sáb Fev 10, 2018 23:16

roninhasmr escreveu:Tenho essa duvida preciso de resolver com cálculos obrigado


DD36D1C6-3B39-42F9-B0B3-D984D75A8562.jpeg
triangulo

Veja que podemos usar pitágoras no triângulo, então:
\\r^2=(r-9)^2+(r-2)^2\\
r^2=r^2-18r+81+r^2-4r+4\\
r^2-22r+85=0\\
r'=17\\
r''=5

Mas a única resposta possível é r=17, pois r-9 daria um segmento negativo.

Portanto, o lado do quadrado vale:
\\l=2r\\
l=2\cdot 17\\
l=34

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Círculo inscrito num quadrado

Mensagempor adauto martins » Ter Abr 24, 2018 19:12

{A}_{r}=9.2={r}^{2}-r.(r-9)-r.(r-2)...
ai é calcular r e {L}_{q}=2.r
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Círculo inscrito num quadrado

Mensagempor adauto martins » Ter Abr 24, 2018 19:47

uma correçao:
{A}_{R}={r}^{2}-r.(r-9)-9.(r-2)=2.9=18...
obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Círculo inscrito num quadrado

Mensagempor Baltuilhe » Qua Abr 25, 2018 01:18

adauto martins escreveu:uma correçao:
{A}_{R}={r}^{2}-r.(r-9)-9.(r-2)=2.9=18...
obrigado...


Rapaz...

Olha só onde vai chegar:
\\r^2-r.(r-9)-9.(r-2)=2.9=18\\
r^2-r^2+9r-9r+18=18\\
\cancel{r^2}-\cancel{r^2}+\cancel{9r}-\cancel{9r}+18=18\\
18=18

Danou-se tudo :)

Abraços! ;)
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Círculo inscrito num quadrado

Mensagempor adauto martins » Qua Abr 25, 2018 10:36

eh,vc esta com toda razão baltuilhe...obrigado pela correção...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}