• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Círculo inscrito num quadrado

Círculo inscrito num quadrado

Mensagempor roninhasmr » Qui Fev 08, 2018 22:06

Tenho essa duvida preciso de resolver com cálculos obrigado
Anexos
DD36D1C6-3B39-42F9-B0B3-D984D75A8562.jpeg
roninhasmr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Nov 13, 2017 14:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Círculo inscrito num quadrado

Mensagempor Baltuilhe » Sáb Fev 10, 2018 23:16

roninhasmr escreveu:Tenho essa duvida preciso de resolver com cálculos obrigado


DD36D1C6-3B39-42F9-B0B3-D984D75A8562.jpeg
triangulo

Veja que podemos usar pitágoras no triângulo, então:
\\r^2=(r-9)^2+(r-2)^2\\
r^2=r^2-18r+81+r^2-4r+4\\
r^2-22r+85=0\\
r'=17\\
r''=5

Mas a única resposta possível é r=17, pois r-9 daria um segmento negativo.

Portanto, o lado do quadrado vale:
\\l=2r\\
l=2\cdot 17\\
l=34

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Círculo inscrito num quadrado

Mensagempor adauto martins » Ter Abr 24, 2018 19:12

{A}_{r}=9.2={r}^{2}-r.(r-9)-r.(r-2)...
ai é calcular r e {L}_{q}=2.r
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 692
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Círculo inscrito num quadrado

Mensagempor adauto martins » Ter Abr 24, 2018 19:47

uma correçao:
{A}_{R}={r}^{2}-r.(r-9)-9.(r-2)=2.9=18...
obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 692
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Círculo inscrito num quadrado

Mensagempor Baltuilhe » Qua Abr 25, 2018 01:18

adauto martins escreveu:uma correçao:
{A}_{R}={r}^{2}-r.(r-9)-9.(r-2)=2.9=18...
obrigado...


Rapaz...

Olha só onde vai chegar:
\\r^2-r.(r-9)-9.(r-2)=2.9=18\\
r^2-r^2+9r-9r+18=18\\
\cancel{r^2}-\cancel{r^2}+\cancel{9r}-\cancel{9r}+18=18\\
18=18

Danou-se tudo :)

Abraços! ;)
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Círculo inscrito num quadrado

Mensagempor adauto martins » Qua Abr 25, 2018 10:36

eh,vc esta com toda razão baltuilhe...obrigado pela correção...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 692
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}