• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Autovetores e autovalores em equações quadráticas

Autovetores e autovalores em equações quadráticas

Mensagempor frogman » Dom Dez 10, 2017 15:08

Uma empresa produz relógios de mesa e de parede dado pelas suas
equações de demanda Qd1 = 2000-10p1 a quantidade demandada dos relógios de mesa e Qd2 = 1500-5p2
a quantidade demandada de relógios de parede. A variáveis p1 e p2 são os preços de venda dos relógios de
mesa e parede respectivamente. Logo a receita da empresa por ser escrita por:
R = Qd1p1 + Qd2p2:
Determinar a forma quadráatica da receita da empresa e em seguida transformar a equação encontrada
numa equação da elipse. Com o Geogebra tabular os valores de R, a e b encontrados e desenhar/plotar a
quádrica resultante.
frogman
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Dez 10, 2017 15:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}