• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio vetor e geometria analitica

Exercicio vetor e geometria analitica

Mensagempor alexiakarina_ » Qui Mar 02, 2017 23:59

A1, A2,..., An são vertices consecutivos de um poligono regular inscrito numa circunferencia de centro O.
Prove que [tex]\sum_{i=1}^\n\OAi = 0

Obs: se são vertices consecutivos do poligono regular entao eles tem a mesma medida, alem disso fiz um desenho de um poligono(quadrado) e uma circunferencia fora, mas não consegui entender direito o que ele pede, é um desafio!

Por que a soma do vetor OAi é igual a zero ?
alexiakarina_
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mar 02, 2017 23:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Exercicio vetor e geometria analitica

Mensagempor 0 kelvin » Sáb Mar 04, 2017 16:41

Se os vetores formam um polígono regular, o caminho é fechado e a resultante é nula.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Exercicio vetor e geometria analitica

Mensagempor alexiakarina_ » Sáb Mar 04, 2017 17:23

Como assim o caminho é fechado? Desculpe, mas não entendi muito bem
alexiakarina_
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mar 02, 2017 23:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Exercicio vetor e geometria analitica

Mensagempor alexiakarina_ » Sáb Mar 04, 2017 17:28

0 kelvin escreveu:Se os vetores formam um polígono regular, o caminho é fechado e a resultante é nula.

Aaaah agora entendi, obrigadaaa!
alexiakarina_
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mar 02, 2017 23:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59