• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio vetor e geometria analitica

Exercicio vetor e geometria analitica

Mensagempor alexiakarina_ » Qui Mar 02, 2017 23:59

A1, A2,..., An são vertices consecutivos de um poligono regular inscrito numa circunferencia de centro O.
Prove que [tex]\sum_{i=1}^\n\OAi = 0

Obs: se são vertices consecutivos do poligono regular entao eles tem a mesma medida, alem disso fiz um desenho de um poligono(quadrado) e uma circunferencia fora, mas não consegui entender direito o que ele pede, é um desafio!

Por que a soma do vetor OAi é igual a zero ?
alexiakarina_
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mar 02, 2017 23:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Exercicio vetor e geometria analitica

Mensagempor 0 kelvin » Sáb Mar 04, 2017 16:41

Se os vetores formam um polígono regular, o caminho é fechado e a resultante é nula.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Exercicio vetor e geometria analitica

Mensagempor alexiakarina_ » Sáb Mar 04, 2017 17:23

Como assim o caminho é fechado? Desculpe, mas não entendi muito bem
alexiakarina_
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mar 02, 2017 23:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Exercicio vetor e geometria analitica

Mensagempor alexiakarina_ » Sáb Mar 04, 2017 17:28

0 kelvin escreveu:Se os vetores formam um polígono regular, o caminho é fechado e a resultante é nula.

Aaaah agora entendi, obrigadaaa!
alexiakarina_
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mar 02, 2017 23:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}