• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Superficie Esférica]

[Superficie Esférica]

Mensagempor EloiCamara » Ter Jan 10, 2017 12:44

Alguém sabe como resolver essa questão?
"Determine o raio e as coordenadas do centro do círculo, que se obtém seccionando a superfície esférica S: x²+y²+z²=16 com o plano a:x+y+z-1= 0"
EloiCamara
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jan 10, 2017 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computação
Andamento: cursando

Re: [Superficie Esférica]

Mensagempor adauto martins » Qui Jan 12, 2017 14:46

{S}_{1}:{x}^{2}+{y}^{2}+{z}^{2}-16=0

{S}_{2}:x+y+z-1=0

a curva sera a intersecçao de {S}_{1}\bigcap_{}^{}{S}_{2},ou seja

{x}^{2}+{y}^{2}+{z}^{2}-16=x+y+z-1,agora um pouco de algebrismo para completar os quadrados,teremos:

({x}^{2}-2x+4)+({y}^{2}-2y+4)+({z}^{2}-2z+4)-(x+y+z)-1-4=0

{(x-2)}^{2}+{(y-2)}^{2}+{(z-2)}^{2}-1-1-4=0

{(x-2)}^{2}+{(y-2)}^{2}+{(z-2)}^{2}=6
q. sera a equaçao da circunferencia no espaço de centro (2,2,2)...r=\sqrt[]{6}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.