• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores em R3

Vetores em R3

Mensagempor brunofrancisco11 » Sex Nov 04, 2016 10:46

Boa tarde pessoal,
meu primeiro post no blog por isso me desculpem se infrigi alguma regra.

Tenho este pequeno exercicio que não estou conseguindo resolver.
Dado os vectores \upsilon= (-1,0,2), \nu= (2,1,-1).
d) Decomponha o vector \mu como a soma de dois vetores, {w}_{1} e {w}_{2} tais que {w}_{1} é paralelo a \upsilon e {w}_{2} é ortogonal a \upsilon

O que tentei fazer foi:

\upsilon = {w}_{2} + {w}_{1}

Se {w}_{1} || \upsilon e {w}_{2}\upsilon Então {w}_{1} \Lambda \upsilon = 0 e {w}_{2}\upsilon = 0

Fiz {w}_{1} \Lambda \upsilon = 0 e consegui (-y-z, x+2x, x -2y) = 0. Tentei resolver isto num sistema de equações e não consegui passar dai

-y-z = 0 -
x + 2z = 0 <=> x = -2z
x -2y = 0 -2y = x

Estou a resolver o exercicio bem? Se sim, como posso passar daqui?
brunofrancisco11
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 04, 2016 10:30
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59