• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UESB 2012 Geometria analítica

UESB 2012 Geometria analítica

Mensagempor Garibaldi » Ter Dez 01, 2015 18:40

No projeto para a expansão do sistema viário de uma cidade do sudoeste da Bahia, um arquiteto representou, em um plano cartesiano, um anel rodoviário pela equação x^{2} + y^{2} − 6x − 6y + 13 = 0 e uma estrada pela equação 2x − y + k = 0.
Assim, o número de valores inteiros que k pode assumir, de modo que a estrada e o anel possuam duas interseções distintas, é

01) 9
02) 8
03) 7
04) 6
05) 5

Resp.:9

Obrigado pela ajuda!
Garibaldi
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Nov 12, 2015 15:38
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UESB 2012 Geometria analítica

Mensagempor DanielFerreira » Dom Jan 31, 2016 21:02

Olá Garibaldi, boa noite!!

Para encontrar as intersecções devemos resolver o sistema formado pelas equações fornecidas no enunciado, veja:

Equação I: x² + y² - 6x - 6y + 13 = 0

Completemos os quadrados,

(x² - 6x) + (y² - 6y) + 13 = 0
(x - 3)² - 9 + (y - 3)² - 9 + 13 = 0
(x - 3)² + (y - 3)² = 5

Equação II: 2x - y + k = 0 ==> y = 2x + k

Substituindo-a na equação I, teremos:

(x - 3)² + (2x + k - 3)² = 5
x² - 6x + 9 + (4x² + k² + 9 + 4kx - 12x - 6k) - 5 = 0
5x² + (4k - 18)x + (k² - 6k + 13) = 0

A equação acima terá raízes reais e distintas se o discriminante for maior que zero. Daí, segue que:

{Delta} = (4k - 18)² - 20(k² - 6k + 13)
{Delta} = 16k² - 144k + 324 - 20k² + 120k - 260
{Delta} = - 4k² - 24k + 64

Mas, {Delta} > 0; ou seja,

- 4k² - 24k + 64 > 0
k² + 6k - 16 < 0
(k + 8)(k - 2) < 0

Estudando o sinal da inequação do 2º grau acima:

____-____(- 8)____+______(+ 2)____-_____

Concluímos que S = {x E R | - 8 < x < 2}. Isto é, S = {- 7, - 6, - 5, - 4, - 3, - 2, - 1, 0, 1}.

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee:


cron