• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UESB 2012 Geometria analítica

UESB 2012 Geometria analítica

Mensagempor Garibaldi » Ter Dez 01, 2015 18:40

No projeto para a expansão do sistema viário de uma cidade do sudoeste da Bahia, um arquiteto representou, em um plano cartesiano, um anel rodoviário pela equação x^{2} + y^{2} − 6x − 6y + 13 = 0 e uma estrada pela equação 2x − y + k = 0.
Assim, o número de valores inteiros que k pode assumir, de modo que a estrada e o anel possuam duas interseções distintas, é

01) 9
02) 8
03) 7
04) 6
05) 5

Resp.:9

Obrigado pela ajuda!
Garibaldi
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Nov 12, 2015 15:38
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UESB 2012 Geometria analítica

Mensagempor DanielFerreira » Dom Jan 31, 2016 21:02

Olá Garibaldi, boa noite!!

Para encontrar as intersecções devemos resolver o sistema formado pelas equações fornecidas no enunciado, veja:

Equação I: x² + y² - 6x - 6y + 13 = 0

Completemos os quadrados,

(x² - 6x) + (y² - 6y) + 13 = 0
(x - 3)² - 9 + (y - 3)² - 9 + 13 = 0
(x - 3)² + (y - 3)² = 5

Equação II: 2x - y + k = 0 ==> y = 2x + k

Substituindo-a na equação I, teremos:

(x - 3)² + (2x + k - 3)² = 5
x² - 6x + 9 + (4x² + k² + 9 + 4kx - 12x - 6k) - 5 = 0
5x² + (4k - 18)x + (k² - 6k + 13) = 0

A equação acima terá raízes reais e distintas se o discriminante for maior que zero. Daí, segue que:

{Delta} = (4k - 18)² - 20(k² - 6k + 13)
{Delta} = 16k² - 144k + 324 - 20k² + 120k - 260
{Delta} = - 4k² - 24k + 64

Mas, {Delta} > 0; ou seja,

- 4k² - 24k + 64 > 0
k² + 6k - 16 < 0
(k + 8)(k - 2) < 0

Estudando o sinal da inequação do 2º grau acima:

____-____(- 8)____+______(+ 2)____-_____

Concluímos que S = {x E R | - 8 < x < 2}. Isto é, S = {- 7, - 6, - 5, - 4, - 3, - 2, - 1, 0, 1}.

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}