• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analitica ( Vetor)

Geometria Analitica ( Vetor)

Mensagempor raf » Qui Jun 11, 2015 03:46

Estou com duvida na resolução desse exercicio:
Dados os vetores u= (1, -3, -1), v= (3, 2, -1), w= (-1, 1, 3) e a= (k+1, 2k, -3k). Determine k de modo que [(u + v) x (w - v)] x a= 4

Minha resolução:
[((1,-3,-1)+(3,2,-1)) x ((-1,1,3)-(3,2,1))] x (k+1,2k,-3k) = 4
[(4,-1,-2) x (-4,-1,2)] x (k+1,2k,-3k) = 4
(-16,1,-4) x (k+1,2k,-3k) = 4
-16k-16+2k+12k = 4
-2k-16 = 4
-2k = 16+4
k = 10
raf
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mai 18, 2015 14:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Geometria Analitica ( Vetor)

Mensagempor nakagumahissao » Sex Jun 12, 2015 15:37

raf,


Na sua resulução você multiplicou os vetores usando o PRODUTO ESCALAR. Porém, o que está sendo pedido é um PRODUTO VETORIAL e o mesmo deverá ser resolvido da seguinte maneira:

Dados os vetores u= (1, -3, -1), v= (3, 2, -1), w= (-1, 1, 3) e a= (k+1, 2k, -3k). Determine k de modo que [(u + v) x (w - v)] x a= 4

u + v = (1, -3, -1) + (3, 2, -1) = (1 + 3, -3 + 2, -1 -1) = (4, -1, -2)
w - v = (-1, 1, 3) - (3, 2, -1) = (-1 -3, 1 -2, 3 + 1) = (-4, -1, 4)

o Produto vetorial de (u + v) x (w - v) deverá ser:

(u + v) \times (w - v) = \begin{vmatrix}
   i & j & k  \\ 
   4 & -1 & -2 \\
   -4 & -1 & 4 
\end{vmatrix} = i(-4 -2) - j(16 -8) + k(-4 - 4)

(u + v) \times (w - v) = -6i -8j -8k

Seja a= (p+1, 2p, -3p), onde p = k para que não existam confusões entre a variável k sendo procurada e o vetor k no determinante abaixo e ainda levando em consideração que o enunciado do problema esteja plenamente correto, teremos:

[(u + v) \times (w - v)] \times  a = 
\begin{vmatrix}
   i  & j  & k \\ 
   -6 & -8 & -8 \\
   p+1 & 2p & -3p 
\end{vmatrix} =

= i(24p + 16p) -j(18p + 8p + 8) + k(-12p + 8p + 8) =

= (40p)i - (26p + 8)j + (-4p + 8)k

Novamente, considerando que o enunciado do problema esteja plenamente correto e levando em consideração que [(u + v) x (w - v)] x a= 4 onde o valor 4 é um valor escalar, suponho que a igualdade se dá através do cálculo do modúlo do vetor resultante do cálculo à esquerda da equação. Sendo assim:

\left| ((40p), - (26p + 8), (-4p + 8)) \right| = 4

Calculando este módulo:

\sqrt[]{1600p^2 + 676p^2  + 256p + 64 + 16p^2 - 64p + 64 } = 4

2292 p^2 + 64 p + 112 = 0

Resolvendo esta equação, teremos:

p = k =?0.0139661605584642234+0.22061435382981476i
p = k =?0.013961605584642234?0.22061435382981476i

Acredito que para um exercício, este resultado é muito estranho. Poderia verificar se o enunciado que passou está realmente correto por favor? Principalmente na parte:

[(u + v) x (w - v)] x a= 4

Em algum lugar nesta equação não seria um Ponto (.) representando o produto escalar em vez do sinal de Vezes (Produto vetorial)?
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D