• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação da reta

equação da reta

Mensagempor lucassouza » Sáb Abr 11, 2015 02:17

Olá estou com dificuldades, a questão pede:

determinar as equações vetoriais, paramétricas, simetricas e reduzidas...

na alternativa "d" pede para achar a equação "possui o ponto M (1,5,–2) e é paralela à reta determinada pelos pontos
A(5,–2,3) e B(–1,–4,3)"

só que não estou conseguindo entender como vou achar o vetor diretor, entende?

a resposta da equação vetorial é P=(1,5,–2) +m(3,1,0)
lucassouza
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Set 15, 2014 15:03
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: equação da reta

Mensagempor DanielFerreira » Sáb Abr 11, 2015 09:08

Lucas, bom dia!

Encontre o vetor diretor da reta que passa pelos pontos A e B; esse vetor deverá ser proporcional ao vetor diretor da reta a ser encontrada, pois são paralelos.

Considere r sendo a reta que passa por A e B, então:

\\ \vec{v_r} = (5 - (- 1), - 2 - (- 4), 3 - 3) \\\\ \vec{v_r} = (6, 2, 0)

Ora, de acordo com o que foi exposto acima (paralelismo), temos que \boxed{\vec{v_r} = t \cdot \vec{v_s}}; onde s é a rqueeta a ser encontrada.

Desde que t \in \mathh{R}, poderás atribuir qualquer valor a ele. De acordo com o gabarito apresentado, escolheu-se t = 2!

\\ \vec{v_r} = t \cdot \vec{v_s} \\\\ (6, 2, 0) = 2(x, y, z) \\\\ (x, y, z) = (3, 1, 0) \\\\ \boxed{\vec{v_s} = (3, 1, 0)}

Logo, \boxed{\boxed{\mathh{X} = (1, 5, - 2) + \text{m}(3, 1, 0)}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: equação da reta

Mensagempor lucassouza » Sáb Abr 11, 2015 10:17

Velho, grato desde já, se eu responder desta maneira como está na imagem estaria correto? é porque quando fala em passar pelos pontos AB vem logo à minha cabeça segmento de reta, e para achar o vetor faço B-A... Só que o vetor fica negativo, na sua resolução ficou (6,2,0) como fiz ficou (-6,-2,0). Tbm pertence aos reais oO.
Anexos
resolução.jpg
lucassouza
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Set 15, 2014 15:03
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: equação da reta

Mensagempor DanielFerreira » Sáb Abr 11, 2015 16:56

Lucas, tua resolução também está correta! Afim de obter o vetor diretor da reta positivo poderia ter multiplicado por (- 2), em vez de 2. O importante é haver proporcionalidade entre eles!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)