• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[GA] Projeção

[GA] Projeção

Mensagempor Larissa28 » Sáb Abr 04, 2015 15:58

Considere os vetores
a: i + 3j + 2k
b: 2i - j + k
c: i - 2j
Seja 'pi' um plano paralelo aos vetores b e c e 'r' uma reta perpendicular ao plano 'pi'. Ache a projeção ortogonal do vetor a sobre a reta r.
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [GA] Projeção

Mensagempor adauto martins » Sáb Abr 04, 2015 16:29

r paralelo ao vetor bXc...
bXc=
\begin{vmatrix}
   i & j & k \\
   2 & -1 & 1 \\

   1 & -2 & 0
   \end{vmatrix}=j-4k-(-k-2i)=2i+j+3k=v
a proj. do vetor a em v,eh dado por a.{u}_{v}...
(1,3,2).(2/14,1/14,3/14)=2/14+3/14+6/14=12/14=6/7...confira os calculos,em especial o determinante,pois erro muito em contas,mas o raciocinio eh esse...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [GA] Projeção

Mensagempor Larissa28 » Sáb Abr 04, 2015 16:48

Mas a reta 'r' é perpendicular ao plano 'pi', então ela n pode ser paralela a b e c :s
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [GA] Projeção

Mensagempor adauto martins » Sáb Abr 04, 2015 16:57

o problema diz q. r eh perpendicular ao plano pi,onde estao os vetores b e c,pois estes sao paralelos ao plano pi...pediu-se a proj.ortogonal do vetor a sobre r,q. se calcula pelo produto interno,a saber a.{u}_{v}=\left|a \right|\left|u \right|cos(a,{u}_{v})\Rightarrow cos(a,u)=a.u/\left|a \right|...calcule ai,o cosseno e tera o angulo de proj....
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [GA] Projeção

Mensagempor Larissa28 » Sáb Abr 04, 2015 17:29

Continuo nao entendendo :S
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [GA] Projeção

Mensagempor DanielFerreira » Dom Abr 05, 2015 13:56

Larissa28 escreveu:Considere os vetores
a: i + 3j + 2k
b: 2i - j + k
c: i - 2j
Seja 'pi' um plano paralelo aos vetores b e c e 'r' uma reta perpendicular ao plano 'pi'. Ache a projeção ortogonal do vetor a sobre a reta r.


Uma vez que \vec{b} e \vec{c} são paralelos ao plano \pi, calculando o vetor ortogonal aos dois através do produto vetorial, temos que o vetor normal será perpendicular ao plano. Ora, se o vetor normal é perpendicular ao plano e a reta r é perpendicular ao plano, podemos concluir que o vetor normal do plano é paralelo ao vetor diretor de r.

Encontremos o vetor normal \vec{n}:

\\ \vec{b} \wedge \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & - 1 & 1 \\ 1 & - 2 & 0 \end{vmatrix} \\\\\\ \vec{b} \wedge \vec{c} = \vec{j} - 4\vec{k} + \vec{k} +2\vec{i} \\\\ \boxed{\vec{b} \wedge \vec{c} = (2, 1, - 3)}


Com isso,

\\ \vec{v}_{r} = \vec{n}_{\pi} \cdot \lambda \\\\ \vec{v}_{r} = (2, 1, - 3) \cdot \lambda

Consideremos \lambda = - 1. Portanto, \vec{v}_{r} = (- 2, - 1, 3).


Por fim, calculamos a projeção de \vec{a} sobre a reta r.


\\ \text{Proj}_r(\vec{a}) = \frac{\vec{a} \cdot \vec{v}_r}{||\vec{v}_r||}\;\vec{v}_r \\\\\\ \text{Proj}_r(\vec{a}) = \frac{(1, 3, 2) \cdot (- 2, - 1, 3)}{\sqrt{4 + 1 + 9}}\;(- 2, - 1, 3) \\\\\\ \text{Proj}_r(\vec{a}) = \frac{- 2 - 3 + 6}{\sqrt{14}}\;(- 2, - 1, 3) \\\\\\ \text{Proj}_r(\vec{a}) = \frac{1}{\sqrt{14}}\;(- 2, - 1, 3) \\\\\\ \boxed{\text{Proj}_r(\vec{a}) = \left ( - \frac{2}{\sqrt{14}}, - \frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right )}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [GA] Projeção

Mensagempor Larissa28 » Dom Abr 05, 2015 21:49

A sim, entendido (:
Obrigada!
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}