por Larissa28 » Sáb Abr 04, 2015 15:58
Considere os vetores
a: i + 3j + 2k
b: 2i - j + k
c: i - 2j
Seja 'pi' um plano paralelo aos vetores b e c e 'r' uma reta perpendicular ao plano 'pi'. Ache a projeção ortogonal do vetor a sobre a reta r.
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por adauto martins » Sáb Abr 04, 2015 16:29
r paralelo ao vetor bXc...

=

=v
a proj. do vetor a em v,eh dado por

...
(1,3,2).(2/14,1/14,3/14)=2/14+3/14+6/14=12/14=6/7...confira os calculos,em especial o determinante,pois erro muito em contas,mas o raciocinio eh esse...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Larissa28 » Sáb Abr 04, 2015 16:48
Mas a reta 'r' é perpendicular ao plano 'pi', então ela n pode ser paralela a b e c :s
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por adauto martins » Sáb Abr 04, 2015 16:57
o problema diz q. r eh perpendicular ao plano pi,onde estao os vetores b e c,pois estes sao paralelos ao plano pi...pediu-se a proj.ortogonal do vetor a sobre r,q. se calcula pelo produto interno,a saber

...calcule ai,o cosseno e tera o angulo de proj....
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Larissa28 » Sáb Abr 04, 2015 17:29
Continuo nao entendendo :S
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por DanielFerreira » Dom Abr 05, 2015 13:56
Larissa28 escreveu:Considere os vetores
a: i + 3j + 2k
b: 2i - j + k
c: i - 2j
Seja 'pi' um plano paralelo aos vetores b e c e 'r' uma reta perpendicular ao plano 'pi'. Ache a projeção ortogonal do vetor a sobre a reta r.
Uma vez que

e

são paralelos ao plano

, calculando o vetor ortogonal aos dois através do produto vetorial, temos que o vetor normal será perpendicular ao plano. Ora, se o vetor normal é perpendicular ao plano e a reta

é perpendicular ao plano, podemos concluir que o vetor normal do plano é paralelo ao vetor diretor de

.
Encontremos o vetor normal

:

Com isso,

Consideremos

. Portanto,

.
Por fim, calculamos a projeção de

sobre a reta

.

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Larissa28 » Dom Abr 05, 2015 21:49
A sim, entendido (:
Obrigada!
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- vetores e projeção
por cristina » Sex Mai 14, 2010 11:30
- 5 Respostas
- 2946 Exibições
- Última mensagem por DanielFerreira

Seg Jun 14, 2010 22:03
Geometria Analítica
-
- Projeção Ortogonal
por Balanar » Dom Out 24, 2010 18:19
- 0 Respostas
- 2026 Exibições
- Última mensagem por Balanar

Dom Out 24, 2010 18:19
Geometria Plana
-
- Geometria Analítica - Projeção
por iarapassos » Qua Ago 29, 2012 12:39
- 1 Respostas
- 2440 Exibições
- Última mensagem por LuizAquino

Qua Ago 29, 2012 19:37
Geometria Analítica
-
- Ângulo de reta com projeção
por manuel_pato1 » Qui Set 20, 2012 22:26
- 4 Respostas
- 4292 Exibições
- Última mensagem por manuel_pato1

Sex Set 21, 2012 14:19
Geometria Analítica
-
- projeção ortogonal {vetores}
por Danilo » Ter Nov 06, 2012 19:57
- 3 Respostas
- 5140 Exibições
- Última mensagem por LuizAquino

Qua Nov 07, 2012 16:16
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.