• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[GA] Dependência e Independência Linear

[GA] Dependência e Independência Linear

Mensagempor Larissa28 » Ter Mar 31, 2015 20:43

Considere a equação:

{x}_{1}a+{y}_{1}b+{z}_{1}c = {x}_{2}a+{y}_{2}b+{z}_{2}c
( onde a, b e c são vetores )

a) Mostre que a,b e c são vetores linearmente independentes, então
{x}_{1}={x}_{1}, {y}_{2}={y}_{2}, {z}_{1}={z}_{2}

b) Mostre que a, b e c são linearmente dependentes, então NÃO podemos concluir que
{x}_{1}={x}_{1}, {y}_{2}={y}_{2}, {z}_{1}={z}_{2}
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [GA] Dependência e Independência Linear

Mensagempor adauto martins » Qua Abr 01, 2015 13:13

a)
por hipotese temos q. a,b,c sao LI\Rightarrow (x1-x2)a+(y1-y2)b+(z1-z2)c=0\Rightarrow (x1-x2)=0,(y1-y2)=0,(z1-z2)=0
b)por hipotese temos q. a,b,c sao LD... entao podemos ter um dos vetores como combinaçao linear dos outros dois...por exemplo
a=((y1-y2)/(x1-x2))b+((y1-y2)/(x1-x2))c\Rightarrow x1-x2\neq 0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59