• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação Plano] Transformar de geral pra paramétrica

[Equação Plano] Transformar de geral pra paramétrica

Mensagempor luankaique » Ter Ago 06, 2013 18:08

A equação é:

\alpha: 5x - y - 1 = 0

Fiz aqui e achei:

x = t
y = 5t + h - 1
z = h

Porém a resposta da lista é:

x = t
y = 5t - 1
z = h

Não consigo sair disso :/
luankaique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 25, 2013 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Industrial Mecânica
Andamento: cursando

Re: [Equação Plano] Transformar de geral pra paramétrica

Mensagempor Russman » Qua Ago 07, 2013 09:35

Note que este plano corta o eixo z de forma ortogonal. Assim, ele pode ser descrito por qualquer coordenada constante de z. Essa quantidade h é uma constante. Se você fizer x=t, então 5t-y-1=0 de modo que y = 5t-1 e a coordenada z está livre para qualquer valor constante: z=h, onde h pertence ao Reais.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.