• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[SUPERFICIE] Posição relativa de reta em uma sup esférica

[SUPERFICIE] Posição relativa de reta em uma sup esférica

Mensagempor amigao » Sáb Jun 29, 2013 11:23

Seja r X=(1,0,a) + \lambda(a,a,0) e S: 8x^2+8y^2+8z^2-16x+24y-8z+19=0 Determine a para que (a) r seja tangente (b) secante (c) exterior a S.

Eu tentei fazer porém aparece o lambda no meio me atrapalhando e não consigo tirá-lo e nem continuar. Como faço?
grato.
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [SUPERFICIE] Posição relativa de reta em uma sup esféric

Mensagempor young_jedi » Dom Jun 30, 2013 18:04

reescrevendo a equação da esfera temos

(x-1)^2+(y+\frac{3}{2})^2+(z-\frac{1}{2})^2=\left(\frac{3}{2\sqrt2}\right)^2


com isso temos o raio e o centro da esfera
agora si a reta é tangente a esfera então a distancia do centro ate a reta é igual ao raio. Então escolhemos um ponto qualquer da reta, por conveniência vamos escolher o ponto onde lambda é igual a zero ou seja o ponto

(1,0,a)

então fazendo o ponto central da esfera menos esse ponto teremos o vetor

\overrightarrow{v}=\left(0,-\frac{3}{2},\frac{1}{2}-a\right)

calculando o modulo do produto vetorial deste vetor pelo vetor diretoo da reta e dividindo pelo modulo do vetor diretor teremos a distancia da reta ao cento que deve ser igual ao raio

\frac{\left|\left(0,-\frac{3}{2},\frac{1}{2}-a\right)\times\left(a,a,0\right)\right|}{|(a,a,0)|}=\frac{3}{2\sqrt2}

tente concluir, comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.