• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[SUPERFICIE] Posição relativa de reta em uma sup esférica

[SUPERFICIE] Posição relativa de reta em uma sup esférica

Mensagempor amigao » Sáb Jun 29, 2013 11:23

Seja r X=(1,0,a) + \lambda(a,a,0) e S: 8x^2+8y^2+8z^2-16x+24y-8z+19=0 Determine a para que (a) r seja tangente (b) secante (c) exterior a S.

Eu tentei fazer porém aparece o lambda no meio me atrapalhando e não consigo tirá-lo e nem continuar. Como faço?
grato.
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [SUPERFICIE] Posição relativa de reta em uma sup esféric

Mensagempor young_jedi » Dom Jun 30, 2013 18:04

reescrevendo a equação da esfera temos

(x-1)^2+(y+\frac{3}{2})^2+(z-\frac{1}{2})^2=\left(\frac{3}{2\sqrt2}\right)^2


com isso temos o raio e o centro da esfera
agora si a reta é tangente a esfera então a distancia do centro ate a reta é igual ao raio. Então escolhemos um ponto qualquer da reta, por conveniência vamos escolher o ponto onde lambda é igual a zero ou seja o ponto

(1,0,a)

então fazendo o ponto central da esfera menos esse ponto teremos o vetor

\overrightarrow{v}=\left(0,-\frac{3}{2},\frac{1}{2}-a\right)

calculando o modulo do produto vetorial deste vetor pelo vetor diretoo da reta e dividindo pelo modulo do vetor diretor teremos a distancia da reta ao cento que deve ser igual ao raio

\frac{\left|\left(0,-\frac{3}{2},\frac{1}{2}-a\right)\times\left(a,a,0\right)\right|}{|(a,a,0)|}=\frac{3}{2\sqrt2}

tente concluir, comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}