• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar a equação geral da elipse com centro na origem, q

Determinar a equação geral da elipse com centro na origem, q

Mensagempor juniocs » Qua Mai 29, 2013 15:31

Determinar a equação geral da elipse com centro na origem, que passa pelo ponto
P=(1,1) e tem um foco F=(\frac{\sqrt[]{6}}{2}, 0).

Utilizei a fórmula da distância d(P,F1) + d(P,F2) = 2a, para descobrir o valor de "a", mas não consigo terminar devido as frações.
juniocs
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Set 19, 2012 09:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engª de Produção
Andamento: cursando

Re: Determinar a equação geral da elipse com centro na orige

Mensagempor LuizAquino » Ter Jun 04, 2013 14:34

juniocs escreveu:Determinar a equação geral da elipse com centro na origem, que passa pelo ponto
P=(1,1) e tem um foco F=(\frac{\sqrt[]{6}}{2}, 0).

Utilizei a fórmula da distância d(P,F1) + d(P,F2) = 2a, para descobrir o valor de "a", mas não consigo terminar devido as frações.


Pelos dados do exercício, podemos dizer que os focos são F_1 = \left(-\dfrac{\sqrt{6}}{2},\,0\right) e F_2 = \left(\dfrac{\sqrt{6}}{2},\,0\right) .

Como você mesmo já observou, da definição de elipse temos que:

d(P,\,F_1) + d(P,\,F_2) = 2a

Substituindo os valores dados, temos que:

\sqrt{\left(-\dfrac{\sqrt{6}}{2}-1\right)^2 + (0 - 1)^2} + \sqrt{\left(\dfrac{\sqrt{6}}{2}-1\right)^2 + (0 - 1)^2} = 2a

\sqrt{\left(\dfrac{-\sqrt{6} - 2}{2}\right)^2 + 1} + \sqrt{\left(\dfrac{\sqrt{6}-2}{2}\right)^2 + 1} = 2a

\sqrt{\left[\dfrac{(-1)\left(\sqrt{6} + 2\right)}{2}\right]^2 + 1} + \sqrt{\left(\dfrac{\sqrt{6}-2}{2}\right)^2 + 1} = 2a

\sqrt{\dfrac{\left(\sqrt{6} + 2\right)^2}{4} + 1} + \sqrt{\dfrac{\left(\sqrt{6}-2\right)^2}{4} + 1} = 2a

\sqrt{\dfrac{\left(\sqrt{6}\right)^2 + 2\cdot \sqrt{6}\cdot 2 + 2^2}{4} + 1} + \sqrt{\dfrac{\left(\sqrt{6}\right)^2 - 2\cdot \sqrt{6}\cdot 2 + 2^2}{4} + 1} = 2a

\sqrt{\dfrac{10 + 4\sqrt{6}}{4} + 1} + \sqrt{\dfrac{10 - 4\sqrt{6}}{4} + 1} = 2a

\sqrt{\dfrac{14 + 4\sqrt{6}}{4}} + \sqrt{\dfrac{14 - 4\sqrt{6}}{4}} = 2a

\dfrac{\sqrt{14 + 4\sqrt{6}}}{2} + \dfrac{\sqrt{14 - 4\sqrt{6}}}{2} = 2a

a = \dfrac{\sqrt{14 + 4\sqrt{6}} + \sqrt{14 - 4\sqrt{6}}}{4}

Lembrando que a equação da elipse desejada terá o formato \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 , note que você precisa calcular a^2 . Neste caso, temos que:

a^2 = \left(\dfrac{\sqrt{14 + 4\sqrt{6}} + \sqrt{14 - 4\sqrt{6}}}{4}\right)^2

a^2 = \dfrac{\left(\sqrt{14 + 4\sqrt{6}}\right)^2 + 2\left(\sqrt{14 + 4\sqrt{6}}\right)\left(\sqrt{14 - 4\sqrt{6}}\right) + \left(\sqrt{14 - 4\sqrt{6}}\right)^2}{16}

a^2 = \dfrac{\left(14 + 4\sqrt{6}\right) + 2\sqrt{\left(14 + 4\sqrt{6}\right)\left(14 - 4\sqrt{6}\right)} + \left(14 - 4\sqrt{6}\right)}{16}

a^2 = \dfrac{28 + 2\sqrt{14^2 - \left(4\sqrt{6}\right)^2}}{16}

a^2 = \dfrac{28 + 2\sqrt{196 - 16\cdot 6}}{16}

a^2 = \dfrac{28 + 2\sqrt{100}}{16}

a^2 = \dfrac{48}{16}

a^2 = 3

Agora tente terminar o exercício a partir daí.

Observação 1

Já que você está com dificuldades em frações, eu sugiro que você assista a videoaula "Matemática Zero 2.0 - Aula 12 - Frações". Ela está disponível no canal:

http://www.youtube.com/nerckie

Observação 2

Você também poderia resolver o exercício através do sistema de equações:

\begin{cases}
\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \\
b^2 + c^2 = a^2
\end{cases}\implies
\begin{cases}
\dfrac{1}{a^2} + \dfrac{1}{b^2} = 1 \\
b^2 + \left(\dfrac{\sqrt{6}}{2}\right)^2 = a^2
\end{cases}

Note que a primeira equação foi obtida ao substituir o ponto P = (1, 1) na equação da elipse. Já a segunda foi obtida substituindo a informação sobre o foco (ou seja, considerando que c = \dfrac{\sqrt{6}}{2}).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Determinar a equação geral da elipse com centro na orige

Mensagempor juniocs » Sáb Jun 08, 2013 17:18

Valeu, muito obrigado.
juniocs
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Set 19, 2012 09:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engª de Produção
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 29 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D