• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ajuda

ajuda

Mensagempor GABRIELA » Qui Out 01, 2009 19:36

Me ensina detalhadamente como resolver intersecção dos seguintes pares de retas concorrentes de equações:

3x+2y-8 = 0 \,\,e \,\,4x+5y-13 = 0
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: ajuda

Mensagempor Cleyson007 » Sáb Out 03, 2009 14:01

Basta resolver o sistema linear com as duas incógnitas:

3x+2y=8

4x+5y=13

Quanto ao processo de resolução:

Multiplique a primeira equação por (-4) e a segunda equação por (3), em seguida some as equações.

Você encontrará:

-12x+12x-8y+15y=-32+39

Resolvendo, y=1

Substiuindo o valor de y em qualquer uma das equações, você encontrará x=2.

Espero ter ajudado!

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: ajuda

Mensagempor GABRIELA » Dom Out 04, 2009 10:35

Obrigada.Entendi como faz a questão! :y:
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: ajuda

Mensagempor Elcioschin » Dom Out 04, 2009 21:43

Outra solução:

147 = 7*(q³ - 1)/(q - 1) ----> 21 = (q³ - 1)/(q - 1)

Divida o polinômio (q³ - 1) por (q - 1) usando algoritmo de Briot-Ruffini, por exemplo.

O quociente encontrado será (q² + q + 1)

q² + q = 1 = 21 -----> q² + q - 20 = 0 ----> Raízes q = - 5 ou q = 4

q = - 5 não serve pois a PG é crescente ----> q = 4

PG ----> 7, 28, 112
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}