• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quádrica - identificar quádrica

Quádrica - identificar quádrica

Mensagempor renan_a » Qui Fev 07, 2013 08:57

Fala pessoal , beleza.
Estou com um exercício do livro vetores e geometria analítica, do paulo winterle , e não consigo resolver o seguinte exercícios::

identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:

m) y² - x² = 16 0\leqz\leq4

Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real

Até aqui, é isso??

o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...
Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Quádrica - identificar quádrica

Mensagempor LuizAquino » Ter Fev 19, 2013 14:04

renan_a escreveu:identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:

m) y² - x² = 16 0\leq z \leq 4

Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real

Até aqui, é isso??


Você esqueceu de mencionar que quando x = 0 temos que y = 4 e y = -4 são retas paralelas ao eixo z (e passando, respectivamente, por (0, 4, 0) e (0, -4, 0)).

renan_a escreveu:o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...


Bem, o eixo z não está servindo como "eixo de rotação" nesse caso. Quando você fizer o esboço da superfície perceberá que ela não é formada através de uma revolução.

renan_a escreveu:Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície


Vamos pensar um pouco... "Traduzindo" o que o exercício diz, dado um ponto P = (x, y, z) dessa superfície, temos que para qualquer z no intervalo [0, 4] irá acontecer que y² - x² = 16.

Vamos escolher, por exemplo, z = 4. Geometricamente falando, o que significa z = 4? Ora, sabemos que isso representa um plano paralelo a xy e que passa por (0, 0, 4). Temos ainda que para os pontos P = (x, y, 4) da superfície, devemos ter y² - x² = 16. Juntando essas informações, temos que sobre o plano z = 4 a superfície formará a hipérbole y² - x² = 16.

Generalizando a ideia, temos que para z = k, com k no intervalo [0, 4], os pontos P = (x, y, k) dessa superfície formarão sobre o plano z = k a hipérbole y² - x² = 16.

Conclusão: a superfície é formada "empilhando" a hipérbole y² - x² = 16, começando no plano z = 0 e indo até z = 4.

A figura abaixo ilustra a superfície. Note que ela não é formada por uma revolução. Mais um detalhe: este tipo de superfície é conhecida como cilindro hiperbólico.

superficie.png
superficie.png (22.08 KiB) Exibido 1105 vezes
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D