por duduxo81 » Sex Nov 18, 2016 13:20
Identificar a cônica cuja equacão em coordenadas polares é dada:
r=

-
duduxo81
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jul 08, 2016 11:21
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciências Exatas
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Conversão de coordenadas Esféricas
por Ellenady » Sáb Fev 21, 2015 08:49
- 1 Respostas
- 1447 Exibições
- Última mensagem por adauto martins

Seg Mar 02, 2015 15:45
Geometria Analítica
-
- Coordenadas Polares
por Questioner » Sáb Jul 17, 2010 14:54
- 2 Respostas
- 4090 Exibições
- Última mensagem por Questioner

Sáb Jul 17, 2010 18:37
Geometria Analítica
-
- Coordenadas Polares
por Bruhh » Seg Mar 21, 2011 15:39
- 4 Respostas
- 3871 Exibições
- Última mensagem por Bruhh

Ter Mar 22, 2011 14:22
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas polares
por suziquim » Seg Mai 16, 2011 17:31
- 2 Respostas
- 1717 Exibições
- Última mensagem por suziquim

Ter Mai 17, 2011 11:15
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas polares
por manuoliveira » Ter Nov 20, 2012 09:03
- 1 Respostas
- 1690 Exibições
- Última mensagem por MarceloFantini

Ter Nov 20, 2012 09:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.