por Larissa28 » Ter Mar 31, 2015 20:43
Considere a equação:

( onde a, b e c são vetores )
a) Mostre que a,b e c são vetores linearmente independentes, então

b) Mostre que a, b e c são linearmente dependentes, então NÃO podemos concluir que

-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por adauto martins » Qua Abr 01, 2015 13:13
a)
por hipotese temos q. a,b,c sao LI

b)por hipotese temos q. a,b,c sao LD... entao podemos ter um dos vetores como combinaçao linear dos outros dois...por exemplo

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dependência e independência linear
por MtHenrique » Dom Mai 04, 2014 11:38
- 3 Respostas
- 2545 Exibições
- Última mensagem por e8group

Dom Mai 04, 2014 22:43
Álgebra Linear
-
- [GA] Dependência e Independência Linear
por Larissa28 » Dom Set 27, 2015 22:10
- 1 Respostas
- 2614 Exibições
- Última mensagem por nakagumahissao

Qua Set 30, 2015 15:36
Sequências
-
- [Vetores] Dependência e Independência linear
por Eli Andrade » Seg Fev 04, 2019 16:29
- 0 Respostas
- 6925 Exibições
- Última mensagem por Eli Andrade

Seg Fev 04, 2019 16:29
Geometria Analítica
-
- [Geometria Analítica] Dependência e independência linear
por Aliocha Karamazov » Qua Out 12, 2011 12:43
- 2 Respostas
- 2236 Exibições
- Última mensagem por Aliocha Karamazov

Qua Out 26, 2011 21:57
Geometria Analítica
-
- Independência Linear
por apotema2010 » Sex Mai 14, 2010 12:20
- 0 Respostas
- 1357 Exibições
- Última mensagem por apotema2010

Sex Mai 14, 2010 12:20
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.