• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Elipse

[Geometria Analítica] Elipse

Mensagempor Pessoa Estranha » Qua Jan 01, 2014 01:27

MOSTRAR QUE A AMPLITUDE DA ELIPSE É DADA POR \frac{2{b}^{2}}{a}.

Minha resolução:

Consideremos PQ o segmento cuja medida é a amplitude da elipse. Conforme a definição da mesma e o Teorema de Pitágoras, considerando F1 e F2 os focos, temos:

PF1 + PF2 = 2a

F1F2 = 2c

{(PF2)}^{2} = {(PF1)}^{2}+{(F1F2)}^{2}

Então:

{(F1F2)}^{2} = {(PF2)}^{2}-{(PF1)}^{2} \rightarrow {(F1F2)}^{2} = (PF2-PF1) (PF2+PF1) \rightarrow 4{c}^{2} = 2a(PF2-PF1) ---->

----> 4{c}^{2} = 2a(PF2-PF1) \rightarrow 2{c}^{2} = a(PF2-PF1)

Porém, pela definição, vem que:

{b}^{2} = {a}^{2}-{c}^{2} \rightarrow {b}^{2} + {c}^{2} = {a}^{2} \rightarrow {c}^{2} = {a}^{2} - {b}^{2}

E, aplicando no resultado, temos:

2{c}^{2} = 2{a}^{2} - 2{b}^{2} = a(PF2-PF1)\rightarrow 2({a}^{2}-{b}^{2}) = a(2a-PF1-PF1) \rightarrow 2({a}^{2}-{b}^{2}) = (2{a}^{2}-2aPF1) \rightarrow ({a}^{2}-{b}^{2}) = ({a}^{2}-aPF1) \rightarrow -{b}^{2}= -(aPF1) \rightarrow PF1 = \frac{{b}^{2}}{a}

Já tentei resolver outras vezes, mas sempre cheguei no mesmo resultado. Qual é o erro? Por favor, ajudem!

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Elipse

Mensagempor Renato_RJ » Qua Jan 01, 2014 09:37

Bom dia !!!

Você deseja provar a amplitude da elipse, também conhecida como latus rectum. Mas você somente calculou o semi latus rectum, isto é, apenas a metade, logo basta multiplicar o seu resultado por 2.

2 \times PF1 = \frac{2b^2}{a}

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: [Geometria Analítica] Elipse

Mensagempor Pessoa Estranha » Qua Jan 01, 2014 11:15

Bom dia! Feliz Ano Novo!
Obrigada por responder!

Agora eu entendi. Achava que a amplitude da elipse era só o tamanho do segmento perpendicular ao eixo focal e cujas extremidades eram um dos focos e um ponto pertencente à elipse. Estranho.... Acabei fixando a ideia e, agora, ficou esquisito....

Obrigada! :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Elipse

Mensagempor Renato_RJ » Qua Jan 01, 2014 15:15

Pessoa Estranha escreveu:Bom dia! Feliz Ano Novo!
Obrigada por responder!

Agora eu entendi. Achava que a amplitude da elipse era só o tamanho do segmento perpendicular ao eixo focal e cujas extremidades eram um dos focos e um ponto pertencente à elipse. Estranho.... Acabei fixando a ideia e, agora, ficou esquisito....

Obrigada! :-D


Obrigado e um feliz ano novo para você também !!

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.