• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar a equação da esfera!!!! Ajuda

Determinar a equação da esfera!!!! Ajuda

Mensagempor anapmarinho » Dom Out 20, 2013 17:25

Como eu resolvo o exercício?

Determine a equação da esfera que passa pelos pontos A=(2,3,-2), B=(1,0,-2) e C=(5,-1,-3) e possui centro no plano x-y+2z=-6
anapmarinho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 20, 2013 17:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia telecomunicações
Andamento: cursando

Re: Determinar a equação da esfera!!!! Ajuda

Mensagempor e8group » Ter Out 22, 2013 20:22

Pensei da seguinte forma . Chamamos de \pi o plano dado . E suponhamos que M =(a,b,c) \in \pi seja o ponto médio da esfera .Ora ,se M =(a,b,c) \in \pi, então suas coordenadas satisfaz a equação do plano que é :

x-y+2z = -6 . Logo ,

a -b +2c = - 6 .

Além disso , a esfera é o lugar geométrico dos pontos equidistantes do ponto fixo M . Assim , um ponto P= (x,y,z) pertence a esfera se, e somente se ,

d(P,M) =  \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2 } = r = \text{constante} , ou de forma equivalente

(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 .Por outro lado ,

utilizando os pontos dados , temos

r^2 = [d(A,M)]^2 =  [d(B,M)]^2 ] =  [d(C,M)]^2 ] , ou seja ,

r^2 = (2-a)^2 + (3-b)^2 + (2-c)^2  =  (1-a)^2 + (-b)^2 + (-2-c)^2  = (5-a)^2 + (-1-b)^2 + (-3-c)^2 . Através da igualdade (2-a)^2 + (3-b)^2 + (2-c)^2  =  (1-a)^2 + (-b)^2 + (-2-c)^2 e tendo em vista que os termos a^2
,b^2,c^2 em ambos lados da igualdade se cancelem , obteremos :

4 - 4a + 9 -6b + 4 -4c = 1 -2a + 4 + 4c e isolando uma das variáveis como por exemplo "b" , segue

b = 2-a/3-(4 c)/3 , mas lembrando que a -b +2c = - 6, ou seja , b = a+2c - 6 ,então ,

2-a/3-(4 c)/3 = a+2c - 6 o que implica c = 12/5-(2 a)/5, substituindo esta expressão em b = a+2c - 6 , obterá b = 1/5 (-6+a) . Encontramos então as variáveis c,b em função de a . Para determinar a . Basta substituir c,b em a -b +2c = - 6 .

Tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}