• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação e coeficientes] Como resolvo este exercício

[Equação e coeficientes] Como resolvo este exercício

Mensagempor Flordelis25 » Sex Ago 02, 2013 19:00

Olá pessoal :)

Bem estou com uma dúvida na resolução desse exercício. Não sei como resolvo ele, pois meu professor explicou só por cima e não sei como aplicar a teoria do caderno nele. *-)

1)Dada a reta r de equação 2x - 3y + 1 = 0
a) dizer qual a abscissa do ponto de ordenada 3 pertencente à reta r.
b) determinar os pontos de intersecção da reta r com os eixos coordenados.
c) determinar o ponto de intersecção da reta r com a reta s, cuja equação é x + y - 1 = 0.

Obrigada à todos que responderem.
Flordelis25
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 20, 2013 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Equação e coeficientes] Como resolvo este exercício

Mensagempor DanielFerreira » Sáb Ago 03, 2013 08:44

Flordelis,

Flordelis25 escreveu:1)Dada a reta r de equação 2x - 3y + 1 = 0
a) dizer qual a abscissa do ponto de ordenada 3 pertencente à reta r.


Consideremos o ponto (x, y) = (2, 3);
- o número dois pertence ao eixo x, portanto, ABSCISSA;
- o número três pertence ao eixo y, daí, ORDENADA.

O enunciado fornece a seguinte informação: \boxed{y = 3}. Resta-nos substituir aquele valor na equação da reta r e encontrar o valor de 'x' (abscissa). Segue,

\\ 2x - 3y + 1 = 0 \\ 2x - 3 \cdot 3 + 1 = 0 \\ 2x - 9 + 1 = 0 \\ 2x = 8 \\ \boxed{\boxed{x = 4}}


Flordelis25 escreveu:b) determinar os pontos de intersecção da reta r com os eixos coordenados.


Eixos coordenados, a grosso modo, é aquele em que um dos eixos (horizontal ou vertical) é nulo. Tomemos com exemplo o seguinte ponto (x, y) = (0, 2), note que o ponto é marcado sobre o eixo vertical (horizontal nulo).

Daí, os eixos coordenados são dados por (x, 0) e (0, y). Segue,

- intersecção do ponto (x, 0) com a reta r:

\\ 2x - 3y + 1 = 0 \\ 2x - 3 \cdot 0 + 1 = 0 \\ 2x + 1 = 0 \\ \boxed{x = - \frac{1}{2}}


- intersecção do ponto (y, 0) com a reta r:

\\ 2x - 3y + 1 = 0 \\ 2 \cdot 0 - 3y + 1 = 0 \\- 3y + 1 = 0 \\ \boxed{y = \frac{1}{3}}

\boxed{\boxed{S = \left{ (- \frac{1}{2}, 0) \;\; \text{e} \;\; (0, \frac{1}{3}) \right}}}


Flordelis25 escreveu:c) determinar o ponto de intersecção da reta r com a reta s, cuja equação é x + y - 1 = 0.


Para resolver essa alínea, deverás isolar o y nas duas equações e igualar. Após encontrar um valor para a abscissa, ou seja, o valor de x, substitua-o em uma das equações da reta para obter o valor de y. Pronto! encontraste o ponto de intersecção.

Espero ter ajudado!

Qualquer dúvida comente!

Att,

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação e coeficientes] Como resolvo este exercício

Mensagempor Flordelis25 » Sáb Ago 03, 2013 21:08

Só uma dúvida Daniel Ferreira, nesta parte, seria (0,y), não é?!
Mas a resolução está certa, só notei o erro. Sem querer ser chata :)


- intersecção do ponto (y, 0) com a reta r:

\\ 2x - 3y + 1 = 0 \\ 2 \cdot 0 - 3y + 1 = 0 \\- 3y + 1 = 0 \\ \boxed{y = \frac{1}{3}}

\boxed{\boxed{S = \left{ (- \frac{1}{2}, 0) \;\; \text{e} \;\; (0, \frac{1}{3}) \right}}}

Obrigada mesmo Daniel, me ajudou mesmo e eu entendi tudinho (milagre kkkk).

Bjbj
Flordelis25
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 20, 2013 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Equação e coeficientes] Como resolvo este exercício

Mensagempor DanielFerreira » Sáb Ago 03, 2013 22:40

[Risos].

Esteja certa de que não me incomodo por ter encontrado/apontado erro em minha resolução, significa que realmente entendeu!! Parabéns!!

Até a próxima, inclusive, responda quando souber!!

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.