• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DETERMINAR VETORES | v + 2u + 3w|

DETERMINAR VETORES | v + 2u + 3w|

Mensagempor sasuyanli » Seg Jul 29, 2013 14:55

Olá, gostaria de pedir uma ajuda neste exercício de VGA:
Dados v, u e w vetores unitários tais que o ângulo entre quaisquer dois deles é 45º, determine || v + 2u + 3w ||.
sasuyanli
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Jul 29, 2013 14:53
Formação Escolar: GRADUAÇÃO
Área/Curso: FÍSICA
Andamento: cursando

Re: DETERMINAR VETORES | v + 2u + 3w|

Mensagempor Russman » Seg Jul 29, 2013 21:48

(u + 2v + 3w) \cdot (u + 2v + 3w) = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}
u \cdot u + 2(u \cdot v ) + 3 (u \cdot w) + 2 ( v \cdot u) + 4 (v \cdot v) + 6 (v \cdot w) + 3 ( w \cdot u) + 6( w \cdot v) + 9 (w \cdot w) = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}

Como todos os vetores são unitários e o ângulo entre quaisquer dois deles é 45º, então

u \cdot v = u \cdot w = w \cdot v = \frac{\sqrt{2}}{2}}
u \cdot u = v \cdot v = w \cdot w = 1

e, portanto,

1 + 2 \frac{\sqrt{2}}{2}} + 3 \frac{\sqrt{2}}{2}} + 2 \frac{\sqrt{2}}{2}} + 4 + 6 \frac{\sqrt{2}}{2}} + 3 \frac{\sqrt{2}}{2}} + 6 \frac{\sqrt{2}}{2}} + 9 = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}
14 + 11 \sqrt{2} = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}

donde

| (u + 2v + 3w) |  = \sqrt{\frac{14+11 \sqrt{2}}{\frac{\sqrt{2}}{2}}}}

Agora é só racionalizar e tudo mais. Se eu não errei nenhuma aritmética é isso. Mas se sim, o processo é esse mesmo e basta reproduzir.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.