• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DETERMINAR VETORES | v + 2u + 3w|

DETERMINAR VETORES | v + 2u + 3w|

Mensagempor sasuyanli » Seg Jul 29, 2013 14:55

Olá, gostaria de pedir uma ajuda neste exercício de VGA:
Dados v, u e w vetores unitários tais que o ângulo entre quaisquer dois deles é 45º, determine || v + 2u + 3w ||.
sasuyanli
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Jul 29, 2013 14:53
Formação Escolar: GRADUAÇÃO
Área/Curso: FÍSICA
Andamento: cursando

Re: DETERMINAR VETORES | v + 2u + 3w|

Mensagempor Russman » Seg Jul 29, 2013 21:48

(u + 2v + 3w) \cdot (u + 2v + 3w) = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}
u \cdot u + 2(u \cdot v ) + 3 (u \cdot w) + 2 ( v \cdot u) + 4 (v \cdot v) + 6 (v \cdot w) + 3 ( w \cdot u) + 6( w \cdot v) + 9 (w \cdot w) = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}

Como todos os vetores são unitários e o ângulo entre quaisquer dois deles é 45º, então

u \cdot v = u \cdot w = w \cdot v = \frac{\sqrt{2}}{2}}
u \cdot u = v \cdot v = w \cdot w = 1

e, portanto,

1 + 2 \frac{\sqrt{2}}{2}} + 3 \frac{\sqrt{2}}{2}} + 2 \frac{\sqrt{2}}{2}} + 4 + 6 \frac{\sqrt{2}}{2}} + 3 \frac{\sqrt{2}}{2}} + 6 \frac{\sqrt{2}}{2}} + 9 = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}
14 + 11 \sqrt{2} = | (u + 2v + 3w) | ^2 \frac{\sqrt{2}}{2}}

donde

| (u + 2v + 3w) |  = \sqrt{\frac{14+11 \sqrt{2}}{\frac{\sqrt{2}}{2}}}}

Agora é só racionalizar e tudo mais. Se eu não errei nenhuma aritmética é isso. Mas se sim, o processo é esse mesmo e basta reproduzir.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)