• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajud na questão

Ajud na questão

Mensagempor GABRIELA » Ter Set 29, 2009 16:22

calcular a distancia entre os pontos R (5,1) e S (7,9):


d RS=\sqrt{(7-5)^2 + {(9-1)^2

d RS = \sqrt{(2)^2 + {(8)^2

d RS = 2\sqrt  {(64)

d RS = 2\sqrt  {(8)

Só que não sei onde estou errando...Podem me mostrar o erRo?
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajud na questão

Mensagempor Molina » Qua Set 30, 2009 00:56

Boa noite, Gabriela.

O erro está desta linha:

GABRIELA escreveu:d RS = \sqrt{(2)^2 + {(8)^2


para esta:

GABRIELA escreveu:d RS = 2\sqrt  {(64)


Você só pode "tirar" da raiz, quando tiver uma multiplicação.

Então primeiramente faça a soma dos números que está dentro da raiz e depois fatore, ok?

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Ajud na questão

Mensagempor Cleyson007 » Qua Set 30, 2009 18:40

Boa tarde!

Fómula da distância entre os pontos: d(R,S)=\sqrt[2]({{{x}_{2}-{x}_{1}})^{2}+{(y}_{2}-{y}_{1})^2

Quanto à resolução: d(R,S)=\sqrt[2]({7-5})^{2}+({9-1})^{2}}

d(R,S)=\sqrt[2]{4+64}

d(R,S)=\sqrt[2]{68}

Gabriela, ao chegar aqui, você deve fatorar o 68

d(R,S)=\sqrt[2]{{2}^{2}.17}

Logo, d(R,S)=2\sqrt[2]{17}

Espero que tenha entendido!

Até mais.

Bons estudos!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Ajud na questão

Mensagempor GABRIELA » Qua Set 30, 2009 20:44

ahhh entendi! Eu parei no 17 e fiquei sem saber o que fazia.hahuaha :y:
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.