• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(CÕNICAS) Elipse

(CÕNICAS) Elipse

Mensagempor manuel_pato1 » Sex Nov 23, 2012 01:04

1 - Determinar uma equação da elipse de centro ( 0,0), eixo maior sobre o eixo dos y, sabendo que passa pelos pontos
P (1,\sqrt[]{14}) e Q(2,-2\sqrt[]{2})

Bom, tendo o eixo maior nos eixo dos y, a equação é da forma:

x²/b² + y²/a²=1

daí eu não sei tirar nada, pois pensei em substituir as coordenadas do ponto na equação , porém eu não sei a² ou b²...

resposta do livro: 2x² + y² = 16

2 - Encontrar uma equação da elipse de centro (0,0) , eixo maior sobre Ox , excentricidade 1/2 e passa pelo ponto (2,3)

Obs: Galera, realmente tentei resolver, procurar em algum lugar uma resolução pra eu entender, porém não obtive sucesso.(só pra deixar claro que não estou criando o tópico sem ao menos tentar =D)
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (CÕNICAS) Elipse

Mensagempor young_jedi » Sex Nov 23, 2012 09:59

Fala manoel_pato1

então no primeiro substitua os pontos na equação

\frac{x^2}{b^2}+\frac{y^2}{a^2}=1

ai voce tera duas equações com a e b como incognitas resolvendo o sistema de equações voce tera a e b e com isso a equação da elipse

na dois utilizando a relação de c e a com a excentricidade e a relação de a, b e c

\frac{c}{a}=\frac{1}{2}

a^2=c^2+b^2

voce encontra b em relação a a então voce substitui na equação da elipse

\frac{x^2}{b^2}+\frac{y^2}{a^2}=1

e substitui o ponto (2,3) nesta equação então voce tera uma equação em função de a, é so encontrar a e determinar b com isso voce tem a equação.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: (CÕNICAS) Elipse

Mensagempor manuel_pato1 » Sex Nov 23, 2012 13:30

Opa young_jedi

cara, na primeira, eu cheguei que b²= 1/16 e a²=1/8

colocando na fórmula, ficou x²/1/16+ y²/1/8= ''?''

no ''?'' , seria 1/16 * 1/8 = 1/128 ou primeiro eu faço 16x² + 8y² = 128 ??

eu fiz do segundo modo, a resposta bateu, mas fiquei na dúvida de qual seria o valor do ''?'' , pois se eu igualasse a 128, a fórmula não voltaria a ser do fórmato anterior que é x²/1/16+ y²/1/8
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (CÕNICAS) Elipse

Mensagempor renan_a » Sex Nov 23, 2012 14:36

obrigado, também tinha dúvida
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: (CÕNICAS) Elipse

Mensagempor manuel_pato1 » Sex Nov 23, 2012 14:42

Cara, desconsidera minha última msg. Eu estava fazendo os exercícios de elipse de uma forma errada. Eu não tirava o mmc entre a² e b² , eu tava multiplicando em X e igualava a a²*b² . O resultado batia em exercícios que a² e b² não eram multiplos, porém nesse que eu não sabia a² e b², nunca daria certo. enfim, refiz do jeito correto, e o resultado bateu. Obrigado, velho.
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59